Search This Blog

Tuesday, May 27, 2014

Should the Unlicensed be Allowed to ‘Drive’ Autonomous Cars?

As reported by RoboHubEarlier this month, when we asked people about your general thoughts on autonomous cars, we found that one of the main advantages of autonomous cars is that those who are not licensed to drive will be able to get to places more conveniently. This led us to wonder more about who should be able to drive an autonomous car.  

We asked three questions through Robohub to find out more. 
q111
Should a child under the legal driving age be allowed to ride driverless cars alone?
Remember the first time your parents handed you their car keys, or took you out for your very first driving lesson? For some of us, that moment came with our parents beaming aloud expressions of uncertainty, anxiety, and worry. Some of this adult/parental psyche may be at play with this question.
About half of the participants (52%) said that children under the legal driving age should not be able to ride driverless cars. This is not entirely surprising. Currently, under driving regulations, children under a certain age (typically late teen years) are not allowed to drive cars because we have reasons to believe that it is not entirely safe to let them drive. By allowing a child to ride autonomous cars alone, people may be concerned about scenarios where the car makes an error or requires the assistance of a human decision-maker during an emergency situation. Interestingly, 38% of the participants believe that children should be able to ride driverless cars alone and the other 10% also think that children should be able to drive autonomous cars with proven technology and specific training. This brings us to a fairly even split in opinion on the issue of children driving autonomous vehicles.
The results may not mean that 48% of the participants would be comfortable putting a newborn baby in an autonomous car to be delivered to his/her grandparents’ house. But it could mean that with a proven technology and some training, the legal driving age could be lowered for ‘driving’ autonomous cars. It makes sense that a shift in driving age would depend on the capability and reliability of the technology. For example, if all cars today had a high probability of breaking down in the middle of the road, then our driver’s license exams may have included a preliminary car mechanics test.
For now, it seems that people are more hesitant to put children in autonomous cars alone. It would be interesting to see if this will change as the technology drives out onto the road and demonstrates its safety and reliability.
q22
Should a senior who no longer has a legal driving license be allowed to ride driverless cars alone?
Compared to the case of the underage drivers, it seems that the majority of the participants (67%) consider it acceptable to have a senior with no legal driver’s license ride an autonomous vehicle alone. Perhaps our participants expect a senior who has had a driver’s license to be able to better handle any emergency or unexpected situations than children, since they have driving experience to rely on if necessary. However, it is possible that some of the seniors are without license due to low cognitive and/or physical capabilities. In such cases, the concerns over the rider being able to handle emergency/unexpected situations is not different from the above unlicensed child rider situation.
This may be one of the reasons why 26% of the participants are not in support of unlicensed seniors riding the autonomous cars alone. However, similar to the responses to the first question, 7% of the participants thought that they would answer yes to this question only if there are limitations placed on where the senior would be allowed to ride the vehicle and whether they would have to pass some type of training to ride the vehicle.
q33
Should a legally blind person be allowed to ride driverless cars alone?
Interestingly, the split of the votes for this question lies somewhere between the above two questions. 58% of the participants answered “yes” while 37% said “no” and the remaining 5% answered with a conditional “yes”. So why is a significant portion of the responses affirmative considering that being able to see is one of the most essential functions we rely on when we drive?
Perhaps people expect the legally blind driver to be able to receive enough information and be able to make informed driving decisions to handle emergency or unexpected situations. It maybe that people are in support of the blind driver scenario because the benefits of driving outweigh the risks for legally blind persons, more so than for a child or a senior. Compared to the case of the underage driver, a legally blind person (assumed adult) is deemed to have better decision making abilities and able to take responsibilities, which are both important requirements for a driver besides being able to perceive the environment.
Drawing a line on who should and should not be able to ride an autonomous vehicle seems to depend on a number of factors, and that doesn’t really include whether the individuals are legally licensed to drive under today’s regulations. Based on the results, the capability and reliability of the autonomous vehicles and the cognitive and physical ability of the rider are likely to change the way we allow different individuals to ‘drive’. One thing is for certain: regulations on who can drive will have to be reconsidered once autonomous vehicles start roaming the streets.

Saturday, May 24, 2014

Segway Just Started a Three-Wheeled Vehicle War

As reported by The Verge: Segway's claim to fame is its two-wheeled scooters' balancing act, but today it's introducing a product that stands a bit more firmly on the ground: the three-wheeled SE-3 Patroller. As its name suggests, the Patroller is meant for law enforcement and public safety uses. It doesn't really have any special tricks like the traditional Segway does, but it's being pitched as a natural extension of the scooter's product line nonetheless. Their obvious connections are pretty limited though: they're both battery powered, and they both have wheels.
  
The real reason that Segway is introducing the SE-3 isn't because it's so natural of an extension though. It's likely doing it because its competitor T3 Motion has been taking market share away from traditional Segways with three-wheeled vehicles of its own. In fact, following the SE-3's introduction today, T3 Motion even made an effort to counter Segway with an announcement that it was working on an even more advanced three-wheeled vehicle.  

"We began this development more than a year ago on the heels of our former CEO joining Segway and announcing they were going to move towards a three wheel platform," William Tsumpes, CEO of T3 Motion said in a statement. Shipments of the SE-3 will begin in June, at $11,999, at which point you may just start to see how they stand up to T3 Motion's vehicles.

Friday, May 23, 2014

SpaceX Plans DragonFly Landing Tests

As reported by NBC News: Billionaire Elon Musk's high-flying space venture, SpaceX, has provided fresh details about its plan to test a Dragon capsule that can use retro rockets to make a soft landing on Earth — and perhaps eventually on Mars.  

The prototype test project, code-named DragonFly, would be conducted at SpaceX's test facility near McGregor, Texas, according to a draft environmental assessment released by the Federal Aviation Administration. The document is part of the regulatory requirements for issuing an experimental permit for the tests.

In the 76-page FAA document, the DragonFly RLV is described as a 7-ton Dragon capsule equipped with eight SuperDraco thrusters, an integrated trunk and up to four landing legs. The program calls for a series of increasingly ambitious tests, starting with a parachute-assisted landing and proceeding to a full propulsive landing and rocket-powered hops.

DragonFly is just one of several initiatives being pursued by Musk's California-based venture to turn SpaceX's Falcon 9 rocket and Dragon capsule into a fully reusable space transport system. The Texas facility is already being used for tests of a rocket prototype called the Falcon 9R, which is designed to fly itself back to a landing pad after sending up its payload.

Unmanned versions of the Dragon capsule have made four round trips to the International Space Station, including one resupply mission that wound up last weekend. Last month, Musk announced in a Twitter update that the hardware for the Dragon 2 would be unveiled on May 29. That would pave the way for the DragonRider, a version capable of ferrying astronauts to and from the International Space Station.

The DragonFly prototype's landing technology would eventually be incorporated into a future version of the seven-person DragonRider capsule. It also could be used on interplanetary trips, including a Mars mission code-named "Red Dragon" or Icebreaker. Last weekend, the 42-year-old Musk reported that he was making progress on a plan to send colonists to Mars during his lifetime.         
         

A Leak Seems To Have Let A 'Significant' Amount Of Seawater Into SpaceX's Dragon Cargo Ship

As reported by Business Insider: A "significant amount of water" was found inside the SpaceX Dragon cargo ship after it came back to Earth from the International Space Station on Sunday, Aviation Week reports.  

The Dragon capsule, currently the only spacecraft that can bring items from the space station back to Earth, splashed down into the Pacific Ocean about 300 miles west of Baja California on May 18.

The capsule returned to Earth with more than 3,500 pounds of science experiments and other items, including a freezer filled with research samples, NASA said.

Although the source of the water was initially thought to have come from some of the samples, NASA officials now believe there was some kind of breach in the spacecraft, causing seawater to spill inside.
The discovery was made when the Dragon hatch was opened at the port in California, space station deputy manager Dan Hartman said in a mission overview briefing. "It has not caused us any impacts that we know of," Hartman said.

There were "several gallons" of water in the cargo ship, according to SpaceFlightnow. Sources told Aviation Week there was more water "than could be accounted for by a burst water-transport bag," which is why officials think the water may have come from the ocean.  


The bulk of the cargo is now on its way back to handling facilities in Houston and the Dragon spacecraft is headed for McGregor, Texas.

The Dragon was launched on a Falcon 9 rocket to the space station on April 18, fulfilling its third of 12 resupply missions required under their $1.6 billion contract with NASA.

A NASA official confirmed to Business Insider that water was found inside the capsule, but said there was no indication of damage to any of the NASA cargo or other payload inside.

"When we started unloading cargo, we noticed our bag was intact," Hartman told Spaceflightnow. "They had some kind incursion through a port or a relief valve. They're off investigating it." 

According to Spaceflight, "Hartman said the Dragon returned in rough seas, which may have contributed to the water spilling inside."


Thursday, May 22, 2014

China Plans to Complete BeiDou GNSS Satellite Launches Ahead of Schedule

As reported by InsideGNSS: China’s BeiDou will accelerate the pace of its development, even as the world’s other three GNSS systems are experiencing delays and difficulties, according to speakers in the opening session of the China Satellite Navigation Conference (CSNC 2014) today (May 21) in Nanjing.

Ran Chengqi, director of the China Satellite Navigation Office, announced that with the launch of a new generation of satellites beginning next year, BeiDou expects to complete its planned Phase III several years ahead of schedule — by 2017 rather than 2020.

BeiDou Phase III includes the migration of its civil Beidou 1 or B1 signal from 1561.098 MHz to a frequency centered at 1575.42 MHz — the same as the GPS L1 and Galileo E1 civil signals — and its transformation from a quadrature phase shift keying (QPSK) modulation to a multiplexed binary offset carrier (MBOC) modulation similar to the future GPS L1C and Galileo’s E1.

The faster completion of China’s GNSS seems less surprising in the context of its rapid development of its ground and space segment since announcing BeiDou in 2007.

Meanwhile, launch of the first GPS III satellite with the L1C signal will not occur until 2016, and completion of the next-generation operational control segment  (OCX) is now slated for 2017, a couple of years later than originally planned. Galileo has also reduced its expectations for launch of its full operational capability (FOC) satellites to four by the end of this year, with the first launch date slipping from June to August and the second now expected in the November/December time-frame.

In a brief update on Russia’s GNSS, Sergey Karutin, head of the GLONASS PNT Information and Analysis Center, said GLONASS an interface control document (ICD) will be published this year describing the “full family of CDMA signals in all three [frequency] bands” that will be broadcast as part of the system’s modernization. One of those bands will be centered at the same 1572.42 MHz slot as GPS L1, Galileo E1, and Phase III BeiDou B1, while the legacy FDMA signals will continue in a relatively wide swath of spectrum at 1602 MHz and higher.


The second GLONASS K1 satellite will launch before the end of this year and the first of the K2 generation that will transmit the CDMA signals is now in production, Karutin said.

David Turner, deputy director of the U.S. State Department’s Office of Space and Advanced Technology, reported that the United States and China had established a bilateral working group on GNSS cooperation as one of the outcomes of a meeting of delegations from the two countries in Beijing on Monday (May 19, 2014). The working group will address such issues as civil service provision issues such as interoperability, service monitoring, interference detection, spectrum protection, and civil aviation applications. 

California OKs Self-Driving Car Rules

As reported by PCMag: The California Department of Motor Vehicles this week approved new rules that govern autonomous vehicle testing in the state.

Come Sept. 16, local residents may see more self-driving cars on California roadways, but don't expect to spot cars rocketing down the highway with an empty driver's seat just yet. For now, any company testing an autonomous vehicle must have a trained driver behind the wheel, ready to take over in the event of a malfunction, and at least $5 million worth of liability insurance.

The rules—and there are many of them—are almost textbook-like in their rigidity, but do a fair job of covering all aspects of state and test driver responsibilities.

An operator must be in the driver's seat, monitoring the vehicle's operations "and able to take over physical control of the vehicle." So, no napping, reading the paper, or FaceTiming.  

Additional requirements include extensive identification of the autonomous vehicle, as well as proof that the "driver" is on the company's payroll and has met all state-required qualifications—including passing the training program.

And, just like earning a traditional driver's license, all self-driving cars must first be tested in a controlled environment before hitting the open road.

The California DMV will start accepting applications for the program on July 1. A $150 annual processing fee covers up to 10 self-driving cars and 20 test drivers. Additional cars or warm bodies are $50.

This week's announcement has been in the works since December, when the DMV first circulated regulations for public use of autonomous vehicles. It held a public hearing in January, and on Monday approved the rules.  

The rules only cover manufacturer testing of self-driving cars. Rules regarding public use of autonomous vehicles are still in development at the DMV and are expected to be adopted by Jan. 1, 2015.

Mountain View-based Google has been one of the most prominent supporters of self-driving car tech. Recently, the search giant said it had logged almost 700,000 autonomous miles.  

Google was a big supporter of California legislation passed in 2012 that allows the technology. With Google execs present, Gov. Jerry Brown signed into law a bill that established safety and performance standards for self-driving cars in the state; Nevada also passed similar legislation.

Will Google’s Self-driving Cars Suffer From “Map Anxiety”?

As reported by IEEE SpectrumA week ago, Google held a press briefing at its expansive campus in Mountain View, California, aimed at showing off the progress it has made in its drive toward producing a self-driving car. The results, according to all who witnessed the company’s fleet of Lexus SUVs make their way around the streets of Mountain View without so much as a hiccup, were, in a word, impressive. (Well, The New York Times John Markoff called it “boring,”which is about as high a complement as you can pay an engineering project whose ultimate intention is to remove the “excitement”—meaning the tens of thousands of deaths each year on U.S. roads—from automobile travel.)  

Christopher Urmson, a former Carnegie Mellon University computer scientist who heads the project, gave a brief overview of the project’s evolution from its original goal of driving 100 000 miles safely in highway traffic conditions to driving on city streets. (The fleet has now passed the 700 000-mile mark.) Urmson said that driving local routes was “100 times more difficult than freeway driving.” But despite the constant barrage of stimuli local roads offer, the cars apparently do a (not) bang-up job.

Before Google’s self-driving car can do for all of us what it did for reporters last week, the Internet search giant has another massive project to undertake. As we reported in the Automaton blog back in 2011, it's all about the maps:
First, it relies on very detailed maps of the roads and terrain, something that Urmson said is essential to determine accurately where the car is. Using GPS-based techniques alone, he said, the location could be off by several meters. 
Andrew Chatham, who heads the team’s mapping effort, described it thusly last week as reported in The Atlantic:
“We tell it how high the traffic signals are off the ground, the exact position of the curbs, so the car knows where not to drive," he said. "We'd also include information that you can't even see like implied speed limits.” This keeps the burden on the car’s software to a minimum. “We tell it what the world is expected to look like when it is empty,” said Chatham. “And then the job of the software is to figure out how the world is different from that expectation.”
Therein lies a big problem—and the next, rather massive, challenge. The vehicles in Google’s fleet definitely qualify as smart cars. But if you plunked one down in a random city that the Google team has yet to exhaustively map, it would be akin to Superman being unable to switch out of his guise as mild-mannered reporter Clark Kent. When the digitized female voice says “Autodriving,” indicating the switch to automated-driving mode, it would be no more capable than the car you drive to work every day.
Google has so far done the work of having human drivers traverse the roads in the vicinity of its campus. But that’s only 3200 kilometers of road out of the roughly 6.4 million kilometers comprising the U.S. road network.
And although Google has sent drivers down all these roads for its Google Maps project (I can’t remember the last time I even saw a paper map), the level of detail required for automated driving is far higher than what you need to ensure that you don’t get lost on the way to the restaurant your friends raved about during their last vacation.
So, how long will this mapping take? Though Google cofounder Sergey Brin has said publicly that the suite of sensors and the compilation of gadgets that apply the captured data would be commercially available by 2017, Urmson suggested a date closer to 2020. By then, perhaps, Google will have spread its mapping, and the “boredom” of automated driving, over a much greater swath of the United States.