As of 2019, there were 645,000 vehicles in the federal government’s fleet
As reported by The Verge: President Joe Biden will start the process of phasing out the federal government’s use of gas-powered vehicles and replacing them with ones that run on electricity. The announcement is the fulfillment of a promise Biden made on the campaign trail to swap government fleet vehicles with American-made EVs.
“The federal government also owns an enormous fleet of vehicles, which we’re going to replace with clean electric vehicles made right here in America, by American workers,” Biden said during a briefing Monday announcing his “Buy American” executive order.
This is great news for US-based EV makers like Tesla, Rivian, and Lordstown, as well as legacy automakers like Ford and General Motors that are in the midst of multibillion-dollar investments in electric vehicle production.
As of 2019, there were nearly 650,000 vehicles in the federal government’s fleet, according to the General Services Administration. This includes 245,000 civilian vehicles, 173,000 military vehicles, and 225,000 post office vehicles. Those vehicles traveled 4.5 billion miles in 2019.
Biden also promised to create a system that offers rebates or incentives for consumers to replace gas cars with electric vehicles — though there aren’t any more details about that plan at this moment.
The details of both plans are still being worked out, but taken together, they represent a huge win for the EV investments made by automakers over the last several years. Ford has said it will spend $11 billion introducing a raft of new EVs, including the Mustang Mach-E and an electric version of its best-selling F-150 pickup truck. GM has committed to spending $27 billion on electric and autonomous vehicles through 2025.
Meanwhile, Tesla’s remarkable stock market rally throughout 2020 has made it the most valuable automaker in the world, and its CEO Elon Musk the richest man on the planet.
Biden’s order may not be a direct win for Tesla, though, which has mostly focused on luxury and performance vehicles. Automakers that could benefit include Ford, which recently unveiled an electric version of its Transit vans, and GM, which just spun out a new company called BrightDrop focused on electric delivery vehicles.
One federal agency that could desperately use a new fleet of zero-emissions vehicles is the United States Postal Service. Hundreds of the agency’s mail trucks, which are manufactured by Northrop Grumman, have caught fire over the last several years, Vice recently reported. And the USPS’s deadline for official bids to make its next-generation mail truck was delayed last year due to the COVID-19 pandemic.
The program to replace the USPS’s current trucks was launched in 2015. But it has dragged on, forcing the postal service to keep its current trucks in service past their expected life span — despite the fact that they were introduced in the late 1980s and early ‘90s and lack features like air conditioning. Two of the original six companies have dropped out.
One of Biden’s goals is to create 1 million new jobs in the auto sector and to “position America to be the global leader in the manufacture of electric vehicles and their input materials and parts.” The president has said he will reach that goal by swapping out the government’s fleet for electric vehicles and through a “cash-for-clunkers”-style plan to ensure that every vehicle on the road is zero-emission by 2040. And he pledged to spend billions of dollars to add 550,000 EV charging stations in the US.
Biden has also said he supports the $7,500 federal tax credit for electric vehicles and would be open to considering new incentives to encourage car buyers to consider making the switch to electric. Former President Donald Trump tried to end the federal EV tax credit in his 2020 budget proposal but was not successful. Also under Trump, the Environmental Protection Agency rolled back Obama-era emissions rules aimed at forcing the auto industry to manufacture less-polluting vehicles.
Biden has already taken steps to roll back Trump’s rollback (roll forward?) of the Obama-era emissions rules. On the day of his inauguration, Biden ordered federal agencies to revisit fuel efficiency standards as well as rules governing emissions from airplanes and appliance and building energy efficiency standards.
As reported by C4ISRNET: A few months ago, an AI pilot trounced an elite U.S. Air Force fighter pilot in a simulated dogfight. Sound like the stuff of sci-fi nightmares? If the Air Force continues on its current path, it is.
When the Defense Advanced Research Projects Agency (DARPA) concluded the AlphaDogfight competition in August, the Air Force experienced just how advanced AI systems have become.
AlphaDogfight pitted AI companies against one another’s dogfighting algorithms in a tournament-style competition, with the winner earning the chance to face off against a human fighter pilot.
The final tally: 5-0 in favor of the algorithmic “pilot.”
That result reinforces a trend in AI vs. human contests: Humans are losing their edge over machines in more and more tasks. And the trend is accelerating. It’s a question of when, not if, AI will change everything about the way the Air Force must do business.
To make that transition, the Air Force must accelerate its efforts to ready itself for the AI revolution. Otherwise, as Chief of Staff Charles Q. Brown put it when calling for accelerating change: The service will lose.
Senior leaders such as Brown are saying the right things. The 2018 National Defense Strategy pushes for “an unmatched 21st century National Security Innovation Base.” The 2019 USAF Annex to the DoD AI Strategy and DoD Data Strategyrecognize that AI will shape the battlefield of the 21st century, and the Air Force must invest in a data-centric ecosystem to facilitate AI capability. The recent National Defense Authorization Act even includes measures to direct focus on AI development in critical areas.
These innovation hubs have incrementally proven out a series of best practices for changing the culture and practicesof the service to prepare for the AI age.
Bold initiatives such as ABMS and JADC2 proclaim an envisioned service that leverages advanced analytics and decision intelligence algorithms to build situational awareness and the ability to act on it quickly, but how does the Air Force take the next step on its journey toward true AI-enabled capability (and prepare for the myriad business process changes that AI will bring), at a pace that will ensure it isn’t left behind? The answer is multifaceted and complex, but the first step should be to scale validated practices from Air Force innovation units and adopt a few overdue changes. These steps should focus on the areas any organization needs to make change to ready itself for AI: people, data and culture.
1. People: Reform talent management for digital skill sets.
In 2020, Kessel Run demonstrated effective ‘digital’ (referring to digital age skill sets critical to AI development like software development and data engineering) talent management by allowing an almost completely remote workforce, moving to virtual hiring, and finding new ways to foster the skills of its people. These moves allowed the organization to pull from a much larger talent pool.
To scale recruiting success demonstrated in the innovation ecosystem, the Air Force needs to allow remote work wherever feasible and maximize its participation in virtual recruiting events, hackathons, career fairs and tech conferences to build more bridges to these communities.
To scale success in building organic Air Force talent already in the service, the assignment selection process should (finally) improve how it tracks, incentivizes and assigns digital talent to appropriate organizations and positions. Tagging skillsets and providing financial compensation will improve retention. The service must also expand continuous learning opportunities outside the professional military education and technical schools.
2. Data: Set the stage for artificial intelligence by becoming data-centric
The service must accelerate its efforts to become more data-centric. The work and advocacy done by Kessel Run, Kobayashi Maru and the Air Force Chief Data Office’s VAULT program embody data-centric efforts. They emphasize data sharing and focus on enforcing healthy data management standards and practices.
Kessel Run’s ODIN effort, the suite of applications replacing the F-35 ALIS maintenance system, demonstrates the importance of valuing data. The ALIS system was plagued by insecurities, prone to error, and left much to be desired in the “user-friendly” category. Within a year of standing up a data team, which was empowered to make appropriate decisions about how to gather and utilize data, Kessel Run deployed a replacement suite of applications that strengthen the F-35 data ecosystem by enforcing standards, creating data stores for analytics, and optimizing maintenance schedules. The new system brings vast data improvements, leading to less maintenance time and more efficient scheduling.
The service faces big challenges to scaling data-driven systems across the Air Force, such as the availability and sharing of data across silos, and archaic methods used to manage huge data sets. Leaders must require and enforce informed data sharing in every digital system, support good IT infrastructure to enable data movement, hire and support software development capabilities to collect and analyze the data, and demand security to protect it. Integrated and operational AI is a system of systems, requiring much more than just algorithms — the right people, data, infrastructure and tools are needed to establish and maintain it.
3. Culture: Embrace and espouse an agile digital mindset
The Air Force innovation ecosystem has demonstrated the value in challenging the status quo, failing fast and iterating continuously. These components, which collectively comprise an agile mindset, have driven these units’ ability to deliver capability to the war fighter. The Next-Generation Air Defense Program recently reported to the world that 6th-gen fighters have been developed, simulated and flown on an incredibly condensed schedule, thanks to sophisticated digital engineering and modeling like that seen in modern Formula One racing design and engineering. These methods simulate real-world conditions with extraordinary fidelity and give designers and engineers the ability to run a huge number of experiments and simulations at an unprecedented pace. A mindset that combines the iterative power of the agile process and the transformational power of digital-first design and evaluation is foundational to integrating AI algorithms.
To scale this across the Air Force, leaders need to publicly and consistently embrace this agile mindset. This means consistently communicating Brown’s “Accelerate Change or Lose” effort and acquisitions chief Will Roper’s call for disruptive agility and a new digital paradigm for Air Force spending. It means taking a cue from Space Force Chief John Raymond’s public push for guardians to help him stand up a lean and agile service. It also means championing success stories like the innovation efforts by the 99th Reconnaissance Squadron at Beale, which implemented radically new processes and demonstrated an ability to provide solutions at speed in the recent U-2 mid-flight software update and AI co-pilot demonstrations.
To recognize and reward these efforts, commanders must discover, then insist on metrics that demonstrate solving problems iteratively with digital solutions, and track speed and efficacy of capability delivery.
The service cannot lose this competition. In an era of renewed great power competition, when peer competitors China and Russia are clearly prioritizing AI development, and the capabilities that come with it, that could be a fatal mistake.
Capt. Jazmin Furtado is an Air Force acquisitions officer, and data science and artificial intelligence leader. She is the current portfolio lead for Wing C2 data at Kessel Run, and liaison to the Air Force and MIT partnership AI Accelerator.
Capt. Chris Dylewski is a pilot and member of the 56th Fighter Wing at Luke Air Force Base, where he leads the ThunderBolt Spark Cell.
The views expressed are the authors’ own and do not necessarily reflect those of the U.S. Air Force, DoD or U.S. Government. The authors would like to thank Gen. Terrence O’Shaughnessy, Douglass Drakeley, Brett Darcey, and George Hellstern for their advice and counsel.
As reported by Popular Mechanics: On December 15, the United States Air Force successfully flew an AI copilot on a U-2 spy plane in California, marking the first time AI has controlled a U.S. military system. In this Popular Mechanics exclusive, Dr. Will Roper, the Assistant Secretary of the Air Force for Acquisition, Technology and Logistics, reveals how he and his team made history.
For Star Wars fans, an X-Wing fighter isn’t complete without R2-D2. Whether you need to fire up converters, increase power, or fix a broken stabilizer, that trusty droid, full of lively beeps and squeaks, is the ultimate copilot.
Teaming artificial intelligence (AI) with pilots is no longer just a matter for science fiction or blockbuster movies. On Tuesday, December 15, the Air Force successfully flew an AI copilot on a U-2 spy plane in California: the first time AI has controlled a U.S. military system.
Completing over a million training runs prior, the flight was a small step for the computerized copilot, but it’s a giant leap for “computerkind” in future military operations.
The U.S. military has historically struggled developing digital capabilities. It’s hard to believe difficult-to-code computers and hard-to-access data—much less AI—held back the world’s most lethal hardware not so long ago in an Air Force not far, far away.
But starting three years ago, the Air Force took its own giant leap toward the digital age. Finally cracking the code on military software, we built the Pentagon’s first commercially-inspired development teams, coding clouds, and even a combat internet that downed a cruise missile at blistering machine speeds. But our recent AI demo is one for military record books and science fiction fans alike.
With call sign ARTUµ, we trained µZero—a world-leading computer program that dominates chess, Go, and even video games without prior knowledge of their rules—to operate a U-2 spy plane. Though lacking those lively beeps and squeaks, ARTUµ surpassed its motion picture namesake in one distinctive feature: it was the mission commander, the final decision authority on the human-machine team. And given the high stakes of global AI, surpassing science fiction must become our military norm.
Our demo flew a reconnaissance mission during a simulated missile strike at Beale Air Force Base on Tuesday. ARTUµ searched for enemy launchers while our pilot searched for threatening aircraft, both sharing the U-2’s radar. With no pilot override, ARTUµ made final calls on devoting the radar to missile hunting versus self-protection. Luke Skywalker certainly never took such orders from his X-Wing sidekick!
The fact ARTUµ was in command was less about any particular mission than how completely our military must embrace AI to maintain the battlefield decision advantage. Unlike Han Solo’s “never-tell-me-the-odds” snub of C-3PO’s asteroid field survival rate (approximately 3,720 to 1), our warfighters need to know the odds in dizzyingly-complex combat scenarios. Teaming with trusted AI across all facets of conflict—even occasionally putting it in charge—could tip those odds in our favor.
But to trust AI, software design is key. Like a breaker box for code, the U-2 gave ARTUµ complete radar control while “switching off” access to other subsystems. Had the scenario been navigating an asteroid field—or more likely field of enemy radars—those “on-off” switches could adjust. The design allows operators to choose what AI won’t do to accept the operational risk of what it will. Creating this software breaker box—instead of Pandora’s—has been an Air Force journey of more than a few parsecs.
Dr. Jeannine Abira, U-2 Federal Labratory Director of Advanced Mathamatics and Algorithim Development (left) and Dr. Jesse Angle, U-2 Federal Laboratory Technical Director (right), work on a computer Sep. 21, 2020 at Beale Air Force Base, California. The U-2 Federal Laboratory is a 15 U.S.C. compliant organization that promotes “edge development” a concept to develop new software integration on operational systems.
A1C LUIS A.RUIZ-VAZQUEZ
U.S. Air Force Gen. Mark Kelly, right, commander of Air Combat Command, and U.S. Air Force Command Chief Master Sgt. David Wade, Air Combat Command, receive a brief from U-2 Federal Laboratory staff about the organization’s stand-up and recent projects, Dec. 4, 2020, at Beale Air Force Base, California.
U.S. AIR FORCE PHOTO BY STAFF SGT. COLVILLE MCFEE
The journey began early in 2018, when I approved a hoodie-wearing Air Force team (fittingly named Kessel Run for a Star Wars smuggling route) to “smuggle” commercial DevSecOps software practices into our Air Operations Center. By merging development, security, and operations using modern information technology, DevSecOps produced higher-quality code faster and more continuously. Sounds perfect for a digitally-challenged Pentagon, right?
You’d think. Kessel Run bent all the rules and definitely “shot first” at the Pentagon’s fixation on five-year development plans with crippling baselines. As Han Solo advocated, keeping momentum sometimes required a good blaster at our side. Thankfully, Kessel Run’s results were game-changing, outpacing previous programs and inspiring a generation of Air Force and Space Force DevSecOps teams, including our U-2 FedLab.
"GIVEN THE HIGH STAKES OF GLOBAL AI, SURPASSING SCIENCE FICTION MUST BECOME OUR MILITARY NORM."
But coding effectively is only one element of trusted AI design. A year later, I directed a Service-wide adoption of coding clouds using landmark technologies containerization and Kubernetes. Containers virtualize and isolate everything code needs to run for Kubernetes then to orchestrate, selectively powering disparate software like a dynamic-but-secure breaker box.
U.S. Air Force Maj. “Vudu”, U-2 Dragon Lady pilot for the 9th Reconnaissance Wing, enters the cockpit while a 9th Physiological Support Airman assists him at Beale Air Force, California, Dec. 15, 2020.
Running ARTUµ containers in our FedLab cloud also proved they would run identically on the U-2—no lengthy safety or interference checks required! This is how we get evolving software—especially AI—out of our clouds and safely onto planes flying through them.
Yet this trusted design didn’t create ARTUµ’s copilot abilities. You have to train for that. Like a digital Yoda, our small-but-mighty U-2 FedLab trained µZero’s gaming algorithms to operate a radar—reconstructing them to learn the good side of reconnaissance (enemies found) from the dark side (U-2s lost)—all while interacting with a pilot. Running over a million training simulations at their “digital Dagobah,” they had ARTUµ mission-ready in just over a month.
So my recent U-2 AI pathfinder—and military AI more generally—was really a three-year journey to becoming a software-savvy Air Force. But why not skip computerized copilots and wingmen and create a purely autonomous Force? After all, a computer won DARPA’s recent dogfight, and we’re already developing autonomous mini-fighters in our Skyborg program.
That autonomous future will happen eventually. But today’s AI can be easily fooled by adversary tactics, precisely what future warfare will throw at it.
U.S. Air Force Maj. “Vudu”, U-2 Dragon Lady pilot for the 9th Reconnaissance Wing, prepares to taxi after returning from a training sortie at Beale Air Force, California, Dec. 15, 2020.
A1C LUIS A.RUIZ-VAZQUEZ
Like board or video games, human pilots could only try outperforming DARPA’s AI while obeying the rules of the dogfighting simulation, rules the AI had algorithmically learned and mastered. The loss is a wakeup call for new digital trickery to outfox machine learning principles themselves. Even R2-D2 confused computer terminals with harmful power sockets!
As we complete our first generation of AI, we must also work on algorithmic stealth and countermeasures to defeat it. Though likely as invisible to human pilots as radar beams and jammer strobes, they’ll need similar instincts for them—as well as how to fly with and against first-generation AI—as we invent the next. Algorithmic warfare has begun.
Now if only we could master those hyperdrives, too.
It's a lot more than just driving directions. GPS, managed by the US Space Force, is embedded throughout the high-tech world we live in.
On Nov. 5, a SpaceX rocket roared into the heavens from Cape Canaveral, Florida, carrying a boxy, 5,000-pound, antenna-studded satellite toward its destination 12,500 miles away, up in what's known as medium Earth orbit. From that distant vantage point, it'll soon beam signals that will help you find your way to a friend's new house out in the suburbs or a vacation destination six hours down the coast.
If you stop at an ATM along the way to grab some cash, those signals will also help the bank know your withdrawal happened after your direct deposit paycheck refreshed your finances. They'll be a factor, too, in whether your cellphone call to your friend, or the rental agent, goes through without garbling or fading.
Those signals will be coming from a GPS III satellite, the newest member of a constellation of satellites that have become a constant and intimate presence in our daily lives. With GPS III, we're getting not just new boxes in the sky, but a series of upgrades that'll help make the system better for all of us here on Earth. And we'll need it.
The Global Positioning System has become vital to nearly all sectors of the country's critical infrastructure, with much of its work happening behind the scenes, and likely to a much greater extent than you realize. GPS tells us where we are and helps us get where we're going, but a core aspect of the technology is when -- the timing of, well, more or less a zillion things. It plays a critical role in financial transactions and stock trades, forecasting the weather, monitoring earthquakes and keeping the power grid humming.
"It's so much more than just driving directions," says Tonya Ladwig, acting vice president of space navigation systems at Lockheed Martin, which built that satellite.
According to a study last year commissioned by the National Institute of Standards and Technology, GPS has about $1 billion a day in economic impact in the US. Its reach is, simply, mind-blowing.
"Gauging the overall value of GPS is nearly impossible," writes Greg Milner in Pinpoint, a 2016 book about how the space-based system came to be and the effect it's having on the world. "It has become difficult to untangle the worth of GPS from the worth of everything."
That's a lot to put on the shoulders of not much more than a couple dozen satellites and what turns out to be a wisp of signal by the time it reaches your phone or an airplane coming in for a safe landing. Which is why experts and lawmakers have long fretted over GPS' susceptibility to jamming and spoofing and the possibility that this invaluable resource could become a single point of massive failure.
GPS is the premier service among just a handful of global navigation satellite systems, or GNSS, which include the European Union's Galileo, Russia's Glonass and China's BeiDou. It's in the midst of a long-running modernization intended to deliver better signals to folks on the ground and to make the satellites more robust in space. That's good news not just for Uber drivers, pilots, bankers, geologists, farmers doing precision agriculture, and users of drones and self-driving cars but also for the sector that got the whole GPS ball rolling in the first place: the US military.
And the military isn't just a heavy-duty GPS user. It also runs the service, for all of us around the world.
How GPS works
What makes GPS an always-on resource -- every bit as much a reliable utility as the electricity and water in your house -- is the coverage the satellites provide.
There are 31 satellites in the GPS constellation, and 24 are considered the minimum for the core constellation to work as it's supposed to. Those two dozen are spread out in six orbital planes, so you should always be within view of at least four at any given moment. The remaining seven are essentially spares, to be rotated in as necessary. Though they're continuously beaming signals down to Earth that you'll pick up in your phone, fitness tracker or boating sat-nav device, they don't know where you are. They just broadcast, like a radio station in space.
"The GPS satellites are actually just highly precise atomic clocks, hooked to a radio transmitting a time signal," says Dana Goward, president of the Resilient Navigation and Timing Foundation, a Washington, DC-based nonprofit.
On the ground, your GPS receiver -- which is what your mobile phone is, thanks to a GPS chip -- picks up the signals from four or more satellites. By measuring slight differences in the signals' time of arrival, all the way down to nanoseconds, it can calculate where you are and whether you're in motion.
"[Location] is a byproduct of how the system works," says Scott Burgett, director of GNSS and software engineering at Garmin, which makes devices including fitness trackers and smartwatches. "All the satellites transmit signals, and they're synchronized pretty accurately, but in order to actually get your position information, you have to solve for time."
The timing data gets translated into highly precise three-dimensional location information -- latitude, longitude and altitude -- as well as speed and direction. That's where Google Maps, Apple Maps and other geographic information systems come into play. It's how we get to the part where you have a street address and you say, "I'll put that in my GPS," and Waze lets you know to take Exit 27, go 3.5 miles and turn left into the parking lot of the beer and burger joint you've heard good things about.
Or it just gets used as a time stamp, pure and simple. Think financial transactions, for instance.
"The timing aspect of this is probably more widely used than the where-are-you aspect," says Goward.
Space Force reporting for duty
The US Space Force operates and maintains the GPS constellation. Each satellite -- picture a PODS storage container, metallic rather than white, with solar arrays sticking out like a pair of wings -- makes two transits around the planet every day.
Even as precisely programmed as those orbits are, the satellites still need their flight paths tended to around the clock.
"Those GPS vehicles are only as accurate as the data we provide them," says 1st Lt. Andrew Johnson, a crew commander in the 2nd Space Operations Squadron, or 2 SOPS. "We get where the satellite thinks it is, we know where the satellite is, and we'll basically bake that into a nice little message, we'll send it up to the vehicle, and the vehicle goes, 'OK I'm actually here,' and that change in information finetunes the signal."
Johnson and 2 SOPS (pronounced "two sops") keep tabs on the GPS satellites from Schriever Air Force Base, located just east of Colorado Springs, Colorado. There are also 16 tracking stations scattered around the globe.
It's no accident that the US Space Force, spun off a year ago from the Air Force Space Command and carrying on its GPS mission, is wrangling a service that's vital to devices used by millions of civilians and businesses worldwide. The origins of GPS stretch back to secret work by the Department of Defense in the 1970s, in a quest for precision targeting. As Milner recounts it, GPS chief architect Brad Parkinson summed up that goal in the phrase "Drop five bombs in the same hole."
In 1983, after a Korean Air Lines passenger jet strayed into Soviet airspace and got shot down, killing 269 people, President Ronald Reagan declassified GPS to give civilian aircraft access to the navigation signals. Almost a decade later, GPS famously earned its stripes as a military resource during Operation Desert Storm, when it helped guide US and allied forces across desert expanses to a swift victory over Iraq during the Gulf War.
Space Force still has military users top of mind as it carries out its GPS mission.
"For us, it's to deliver sustained, reliable GPS capabilities to America's warfighters," says Maj. Gen. DeAnna Burt, director of operations and communications at Space Force headquarters in Peterson Air Force Base, Colorado. Space Force also works closely with civilian and commercial partners to keep things running smoothly, she tells me. "We're always looking to improve not only our military capabilities but our civilian capabilities as well."
Though the funding to keep things running goes through the Pentagon -- the Space Force GPS program had a 2020 fiscal year budget of $1.71 billion -- there's civilian oversight as well. The Defense Department and the Transportation Department co-chair the US government's National Executive Committee for Space-Based Positioning, Navigation and Timing, which coordinates GPS-related matters across federal agencies and includes representatives from Boeing, Garmin, Google, Ohio State and Stanford.
Note the keywords in that committee name: positioning, navigation and timing, or PNT. Where you are, where you're going, and when the signals hit a receiver. It's a term that's inescapable when you're talking with folks who live and breathe GPS.
What GPS III brings
Like any technology of a certain vintage -- the Air Force Space Command declared full operational capability for GPS in April 1995 -- the system needs to be regularly updated, and what that means right now is GPS III.
Here's what GPS III promises: The signals will be three times stronger, and they'll have eight times the anti-jamming capability. The satellites are projected to have a 15-year lifespan, double that of those from the early part of the previous generation, though the older ones have tended to stay in business longer than expected. A modular design means it's easier to make timely changes on the assembly line or to send software uploads to the satellites on orbit.
There's also a new civilian frequency, called L1C. Besides helping with signal strength, it's compatible with Galileo, the EU's counterpart to GPS.
In November 2018, the FCC authorized Galileo signals to be received in the US, which made it that much more likely you'll have multiple satellites in view -- in the double figures even, when technically you only need four to get a good, accurate location. The addition of the L1C signal with GPS III will likely make matters even better.
"If you have more satellites," says Garmin's Burgett, "you can have more direct line-of-sight signals available to you and you can get a better fix."
The military, meanwhile, is getting, among other things, the encrypted M Code that's key to the enhanced anti-jamming and anti-spoofing capabilities, as well as spot beam capability for focused signals in combat areas.
A little bit down the road, the addition of a laser retro-reflector array will allow the positioning of satellites to be refined via ground-based laser.
The first of the GPS III generation of satellites, all built by Lockheed Martin at its Littleton, Colorado, facility, lifted off in December 2018 and became operational in January of this year. The one that lifted off Nov. 5 is the fourth in the series, and it should be ready for duty before we get too deep into 2021.
Lockheed Martin has a contract to deliver a total of 10 GPS III satellites, at a reported average cost of $529 million apiece, but the company says the last two of them will come in at around $200 million each. When that's done, it'll move ahead with a batch called GPS III F, an additional 22 satellites to continue replacing older models, through the coming decade.
"It takes a long time to replenish the GPS constellation," Burgett says. "It takes years."
Weak spots
It might seem like GPS is pretty much always there when you need it, but it's more vulnerable than you may realize. If you live in a city with tall buildings, you've probably fumed waiting for an Uber driver to get to where you're standing -- it could be that buildings are blocking the satellite signals in what's known as the urban canyon effect.
That's a line-of-sight issue, and it can often be resolved by moving, if you can, to a spot with a better view of the heavens. The US government says that GPS-enabled smartphones are typically accurate to within a 16-foot (5-meter) radius under the open sky.
Then there's interference -- other, stronger signals making too much radio "noise" nearby.
"Because it's such a weak signal, it's very, very easy to block, to jam," Goward says. "Virtually any noise within that frequency is going to keep you from hearing the GPS signal."
Space Force's Burt likens it to a nearby sound system at full blast: "If you were at the dinner table and there was a 500-watt stereo playing at full volume in the kitchen, would you be able to hear the conversation going on around you? You might pick up pieces, parts of it, but not pick up all of it."
The US military has to worry about hostile forces jamming or spoofing GPS signals to hide troop movements or to keep friendly forces from getting where they're supposed to go, or weapons from hitting their targets.
Outside of war zones, some countries use GPS interference to mask the whereabouts of VIPs, while criminals use it to pull off shipping heists. The nonprofit Skytruth, which uses satellite images and data to track polluters and poachers, last year reported on GPS manipulation at oil terminals in China likely intended to hide activities that run afoul of export controls.
The Pentagon and other government agencies, meanwhile, are aghast at the Federal Communications Commission's approval last April of a controversial plan by a company called Ligado to create a nationwide 5G network. The frequencies Ligado would be using are very close to those employed for GPS. Ligado says it's sorted out any interference issues, but Defense Department CIO Dana Deasy said in a Senate hearing in May that "there are too many unknowns and the risks are too great."
The vulnerabilities of the satellite signals are something the GPS community has been thinking about for a long time, along with the need for some sort of backup -- the idea being to provide a ground-based service that might not be as good but that would suffice when somebody's jamming or spoofing or if the satellites aren't available.
There have been a number of false starts down that road over the years. A new push came at the end of 2018 with the National Timing Resilience and Security Act, which directed the Secretary of Transportation to establish a terrestrial timing system that could serve as a backup for GPS within two years. We're at that mark now, with nothing yet to show for it.
A more limited proposal came in February when President Trump signed an executive order on PNT, which at least got the NIST in October to draft guidance on developing a timing system free of GPS.
In the years ahead, there will be more Space Force rocket launches carrying the latest GPS III satellites from Lockheed Martin. Modernization of the constellation will continue apace, new applications will appear, and as much as we're hooked on GPS services now, we're likely to only get more dependent.
Satellite timing is everywhere on Earth and in everything.
"I think most people don't realize how much they depend on GPS day in and day out," Space Force's Burt says. "It would be a bad day if we didn't have GPS."