Search This Blog

Tuesday, June 28, 2016

Why the Rise of Driverless Cars Has Got Detroit Spooked

As reported by MIT Technology ReviewAre modern car companies lumbering dinosaurs or fleet-footed innovators looking toward the next big, disruptive idea? At the moment, they seem to be both—while they boast huge revenues and have posted record profits in recent years, firms like GM and Ford also appear to feel that, on some level, the sun is setting on their business model. And they are scrambling to reinvent themselves as firms that provide all sorts of transportation options, from ride-hailing services to cars that drive themselves.

As the cover story in the most recent issue of Fortune puts it:
For 125 years U.S. auto companies made their money on the manufacture of motor vehicles. Now they must be in the business of ride-hailing apps, shuttle buses, 3D maps, and computers on wheels that drive themselves. They’re no longer automotive companies either—they’re now calling themselves “mobility” companies.
This change has come about with dizzying speed—a decade ago, robotic cars only existed in research projects funded by DARPA. Most of them barely worked. Today they represent such a threat to the car industry’s status quo that Ford’s president and CEO, Mark Fields, has said the company must “disrupt itself” if it is to survive. Earlier this year GM bought driverless-car startup Cruise Automation for $1 billion. An avalanche of deals ensued:
In May, Toyota struck a partnership with Uber, Volkswagen invested $300 million in ride-hailing company Gett, Apple poured $1 billion into China’s Didi Chuxing, and Google partnered with Fiat Chrysler to outfit 100 Pacifica minivans with self-driving technology.

But drawing a line between nervous car company executives and a wholesale change in how the average driver approaches owning and driving a car could be a bit simplistic. 
Types of automation like collision avoidance and adaptive cruise control are indeed trickling into midrange cars. Luxury models come with self-parking features, and if you’re brave enough to engage Tesla’s Autopilot, you can experience the (sometimes scary) cutting edge of driverless technology that’s already available to consumers.
But the gap between far-sighted entrepreneurs and everyday drivers is large. One startup mentioned in the Fortune piece, called Zoox, is apparently building “bidirectional robo-taxis” that the company’s founder says aren’t cars at all, but “what comes after the car.” Zoox is apparently raising north of a quarter-billion dollars to make its … conveyance a reality. This kind of “post-car” outlook is popular in Silicon Valley, but people may not be ready for such visionary modes of transportation:
In May, Google posted job listings for test drivers in Arizona, which tech bloggers painted as a dream job. Who wouldn’t want to make $20 an hour sitting in a car doing nothing for eight hours a day? But the social media reaction from nontechies was a glimpse into the public’s fears of robot cars. “You’re gonna have to pay more to get me in that tin can with a mind of its own,” wrote one Facebook commenter.
The arrival of autonomous cars can't come soon enough, given their very real promise for reducing fatalities, injuries, and property damage. But they have a long way to go yet before they have truly arrived.

Friday, June 24, 2016

How do You Teach an Autonomous Vehicle When to Hurt its Passengers?

As reported by The Verge:  How do you teach a car when to self-destruct? As engineers develop and refine the algorithms of autonomous vehicles that are coming in the not-so-distant future, an ethical debate is brewing on what happens in extreme situations — situations where a crash and injury or death are unavoidable.
A new study in Science, "The Social Dilemma of Autonomous Vehicles," attempts to understand how people want their self-driving cars to behave when faced with moral decisions that could result in death. The results indicate that participants favor minimizing the number of public deaths, even if it puts the vehicles’ passengers in harm’s way — what is often described as the "utilitarian approach." In effect, the car could be programmed to self-destruct in order to avoid causing injury of pedestrians or other drivers. But when asked about cars they would actually buy, participants would choose a car that protects them and their own passengers first. The study shows that morality and autonomy can be incongruous: in theory, we like the idea of safer streets, but we also want to buy the cars that keep us personally the safest.
IN THEORY, WE LIKE THE IDEA OF SAFER STREETS
These are new technological quagmires for an old moral quandary: the so-called the trolley problem. It’s a thought experiment that’s analyzed and dissected in ethics class. "In the trolley problem, people face the dilemma of instigating an action that will cause somebody’s death, but by doing so will save a greater number of lives," Azime Chariff, one of the study’s three authors and an assistant professor of psychology at the University of California Irvine, says. "And it’s a rather contrived and abstract scenario, but we realize that those are the sorts of decisions that autonomous vehicles are going to have to be programmed to make, which turns these philosophical thought experiments into something that’s actually real and concrete and we’re going to face pretty soon."

In the study, participants are presented with various scenarios such as choosing to go straight and killing a specified number pedestrians or veering into the next lane to kill a separate group of animals or humans. Participants choose the preferred scenario. In one example: "In this case, the car will continue ahead and crash into a concrete barrier. This will result in the deaths of a criminal, a homeless person, and a baby." The other choice: "In this case the car will swerve and drive through a pedestrian crossing in the other lane. This will result in the deaths of a large man, a large woman, and an elderly man. Note that the affected persons are flouting the law by crossing on the red signal."
The questions — harsh and uncomfortable as they may be in outcome — reflect some of the public discomfort with autonomous vehicles. People like to think about the social good in abstract scenarios, but when it comes time to actually buy a car, they are going to protect their occupants, the data shows.
WHEN I TOOK THE TEST I FOUND THAT I SAVED MORE WOMEN AND CHILDREN
The MIT Media Lab has created a related website, the Moral Machine, that allows users to take the test. It’s intended to help aide the continued study of this developing subject area — an area that will quickly become critical as regulators seek to set rules around the ways cars must drive themselves. (When I took the test, I found that I saved more women and children — not much different than those who got first dibs on the Titanic lifeboats.)
The authors believe that self-driving is unlike other issues of automated transportation, such as airport trams or even escalators, because they are not competing with other cars on the road. Another author, John Bonnefon, a psychological scientist working at France’s National Center for Scientific Research, told me there is no historical precedent that applies to the study of self-driving ethics. "It is the very first time that we may massively and daily engage with an object that is programmed to kill us in specific circumstances. Trains do not self-destruct, no more than planes or elevators do. We may be afraid of plane crashes, but we know at least that they are due to mistakes or ill intent. In other words, we are used to self-destruction being a bug, not a feature."

But even if programming can reduce fatalities by making tough choices, it’s possible that putting too much weight on moral considerations could deter development of a product that might still be years or decades away. Anuj K. Pradhan is an assistant research scientist in UMTRI’s Human Factors Group who studies human behavior systems. He thinks these sorts of studies are important and timely, but would like to see ethical research balanced with real-world applications. "I do not think concerns about very rare ethical issues of this sort [...] should paralyze the really groundbreaking leaps that we are making in this particular domain in terms of technology, policy and conversations in liability, insurance and legal sectors, and consumer acceptance," he says.
It’s hard not to compare a programmed car with what a human driver would do when faced with a comparable situation. We constantly face moral moments in our everyday lives. But a driver in a precarious situation often does not have time to consider moral outcomes, while a machine is more analytical. For this reason, Bonnefon cautions against drawing direct comparisons. "Because human drivers who face these situations may not even be aware that they are [facing a moral situation], and cannot make a reasoned decision in a split-second. Worse, they cannot even decide in advance what they would do, because human drivers, unlike driverless cars, cannot be programmed."
"HUMAN DRIVERS, UNLIKE DRIVERLESS CARS, CANNOT BE PROGRAMMED"
It’s possible that one day, self-driving cars will be essentially perfect, in the same way an automatic transmission is now more precise than even the best manual. But for now, it’s unclear how the public debate will play out as attitudes shift. These days, when Google’s self-driving car crashes, it makes headlines.
What everyone seems to agree on is that the road ahead will be muddled with provocative moral questions, before machines and the market take over the wheel from us. "We need to engage in a collective conversation about the moral values we want to program in our cars, and we need to start this process before the technology hits the market," Bonnefon says.

Thursday, June 23, 2016

This Cognitive Autonomous Vehicle Is Powered By You And IBM Watson

As reported by ForbesSelf driving, cognitive and powered by IBM Watson, a new self-driving vehicle called Olli, is expected to hit public roads later this year in Washington DC and Miami Dade County.
Local Motors, the company that created the first 3D printed car, developed Olli (more like a very short bus) to carry up to 12 people and fill transportation gaps in a city’s transit system or transport employees across corporate campuses more efficiently. Olli is fueled by your collective brains and allows for natural interaction with the vehicle using IBM Watson’s IoT cognitive computing capabilities.
Olli has more than 30 sensors which are embedded in the vehicle that collect transportation data as the vehicle is in motion. Using cognitive computing, Olli can analyze and learn from that collected data. New sensors can be continuously added and adjusted as passenger needs and local preferences are identified. Olli’s knowledge grows based on the interaction with its passengers.

Here’s how Olli works via Watson. A passenger can ask a question or specific vehicle functions on entering the vehicle. By example, “Olli can you take me to the Lincoln Memorial” or “how does this feature work?”. Passengers will also be able to ask for recommendations on local destinations or historical sites based on analysis of personal preferences. Olli learns as it moves and as each passenger asks for destinations it stores and remembers that for the next person.  
Local Motors hopes that Olli can help reduce individual driving at the same time increase the efficiency of rides-on-demand which can help reduce the carbon footprint of cities and corporate or academic campuses.

Wednesday, June 22, 2016

Acura Built an Electric NSX to Tackle Pikes Peak

As reported by Engadget: Acura's eagerly anticipated next-gen NSX is finally going into production for 2017, but the car will hit the road before then -- sort of. The company will race a highly modified version at the Pikes Peak hill climb event on June 26th. However, unlike the (mostly) gas-powered consumer model, The "EV Concept" race vehicle will be powered by four electric motors, one on each wheel. That means it looks roughly the same as a production NSX (other than the scoop and wing), but the custom EV drive train is completely different and built for racing.

The company hasn't said how much power the motors make, but they will give the car something called "four-wheel torque vectoring." That means engineers can dial a precise amount of power to each wheel, making it perform better in corners and when accelerating. The car also uses regenerative braking to extend the battery life.



Electric vehicles are ideal for Pikes Peak, since they aren't affected by the 14,000 foot elevation that chokes gas-powered engines. Last year, Rhys Millen raced a modified eo PP03 up the track in 9:07.222, a time that would have won the gas-powered unlimited class in every year but 2013 and 2014. (Sebastien Loeb holds the unlimited record at 8:13.878, a time set in 2013).

The Acura NSX production car, set to arrive next year for around $150,000, is an odd vehicle. It has a turbocharged 500HP V6, but uses three small electric motors to boost acceleration and cut turbo lag. That gives it stunning acceleration, but purists are worried. The original NSX weighed just 2,712 pounds and was loved for its lack of excess, but the new model reportedly tips the scale at 3,800 pounds, thanks to the hybrid powertrain.







Elon Musk's Companies Team Up: Tesla Offers to Buy SolarCity

As reported by Engadget: Tesla Motors and SolarCity have always had a close link (Elon Musk is the chairman of both companies, and SolarCity was founded by two of his cousins) but now they may come under one roof. They already pair up on charging stations and power for off-grid homes, but Tesla is offering to acquire the energy company, saying it wants to provide its customers with access to the "most sustainable energy source available: the sun." Soon, you might be able to shop for solar panels, home batteries and an electric call all in one place.

The way Tesla sees it, linking up a solar panel, Powerwall battery and Model S/3/X electric vehicle means offering a more efficient way for customers to consumer energy that's vertically integrated. On a call with reporters, Elon Musk said the all-stock deal would end up with a price between $2.5 and $3 billion. He also said that it shouldn't impact plans for the Model 3 or Gigafactory going forward. According to Musk, "we're not an automotive company," pointing at the bigger issues it hopes to address around providing and using sustainable energy sources.

Tuesday, June 21, 2016

DOT and FAA Finalize Rules for Small Unmanned Aircraft Systems

From the FAAToday, the Department of Transportation’s Federal Aviation Administration has finalized the first operational rules (PDF) for routine commercial use of small unmanned aircraft systems (UAS or “drones”), opening pathways towards fully integrating UAS into the nation’s airspace. These new regulations work to harness new innovations safely, to spur job growth, advance critical scientific research and save lives.
“We are part of a new era in aviation, and the potential for unmanned aircraft will make it safer and easier to do certain jobs, gather information, and deploy disaster relief,” said U.S. Transportation Secretary Anthony Foxx. “We look forward to working with the aviation community to support innovation, while maintaining our standards as the safest and most complex airspace in the world.”
According to industry estimates, the rule could generate more than $82 billion for the U.S. economy and create more than 100,000 new jobs over the next 10 years.
The new rule, which takes effect in late August, offers safety regulations for unmanned aircraft drones weighing less than 55 pounds that are conducting non-hobbyist operations.
The rule’s provisions are designed to minimize risks to other aircraft and people and property on the ground. The regulations require pilots to keep an unmanned aircraft within visual line of sight. Operations are allowed during daylight and during twilight if the drone has anti-collision lights. The new regulations also address height and speed restrictions and other operational limits, such as prohibiting flights over unprotected people on the ground who aren’t directly participating in the UAS operation.
The FAA is offering a process to waive some restrictions if an operator proves the proposed flight will be conducted safely under a waiver. The FAA will make an online portal available to apply for these waivers in the months ahead.
“With this new rule, we are taking a careful and deliberate approach that balances the need to deploy this new technology with the FAA’s mission to protect public safety,” said FAA Administrator Michael Huerta. “But this is just our first step. We’re already working on additional rules that will expand the range of operations.”
Under the final rule, the person actually flying a drone must be at least 16 years old and have a remote pilot certificate with a small UAS rating, or be directly supervised by someone with such a certificate. To qualify for a remote pilot certificate, an individual must either pass an initial aeronautical knowledge test at an FAA-approved knowledge testing center or have an existing non-student Part 61 pilot certificate. If qualifying under the latter provision, a pilot must have completed a flight review in the previous 24 months and must take a UAS online training course provided by the FAA. The TSA will conduct a security background check of all remote pilot applications prior to issuance of a certificate.
Operators are responsible for ensuring a drone is safe before flying, but the FAA is not requiring small UAS to comply with current agency airworthiness standards or aircraft certification. Instead, the remote pilot will simply have to perform a preflight visual and operational check of the small UAS to ensure that safety-pertinent systems are functioning property.  This includes checking the communications link between the control station and the UAS.
Although the new rule does not specifically deal with privacy issues in the use of drones, and the FAA does not regulate how UAS gather data on people or property, the FAA is acting to address privacy considerations in this area. The FAA strongly encourages all UAS pilots to check local and state laws before gathering information through remote sensing technology or photography.
As part of a privacy education campaign, the agency will provide all drone users with recommended privacy guidelines as part of the UAS registration process and through the FAA’s B4UFly mobile app. The FAA also will educate all commercial drone pilots on privacy during their pilot certification process; and will issue new guidance to local and state governments on drone privacy issues. The FAA’s effort builds on the privacy “best practices” (PDF) the National Telecommunications and Information Administration published last month as the result of a year-long outreach initiative with privacy advocates and industry.
Part 107 will not apply to model aircraft.  Model aircraft operators must continue to satisfy all the criteria specified in Section 336 of Public Law 112-95 (PDF) (which will now be codified in Part 101), including the stipulation they be operated only for hobby or recreational purposes.

Firefly Rocket Engine Looks Luminous During Test

As reported by Space.com: A white, hot column of flame firing out of a rocket engine, backdropped by white clouds and a blue sky, looks like a work of art in this photo from the private company Firefly Space Systems.

This luminous image was posted to the company's Twitter account on June 10, and shows a single engine — one of 12 that will be included on the completed Firefly Alpha 'aerospike' rocket. The aerospike design uses engine nozzles with a slightly different shape compared to the bell-shaped nozzles seen on many other rocket engines.



Firefly is a company aiming to build "low-cost, high-performance space launch capability for the underserved small satellite market," according to the company's website. The company's first launch with its Firefly Alpha vehicle is scheduled for March 2018. That will be the first of four launches contracted by NASA.

In the picture, the engine is attached to the "life ring," which will hold all 12 engines when the rocket is fully constructed. (Many rocket designs have multiple engines, such as SpaceX's Falcon 9 rocket, which has nine engines.)

The aerospike engine design has been around since the 1960s, a representative for Firefly told Space.com via email, but the company believes it "will have the first aerospike engine in production when Firefly Alpha becomes operational in early 2018," he said.