Search This Blog

Thursday, June 23, 2016

This Cognitive Autonomous Vehicle Is Powered By You And IBM Watson

As reported by ForbesSelf driving, cognitive and powered by IBM Watson, a new self-driving vehicle called Olli, is expected to hit public roads later this year in Washington DC and Miami Dade County.
Local Motors, the company that created the first 3D printed car, developed Olli (more like a very short bus) to carry up to 12 people and fill transportation gaps in a city’s transit system or transport employees across corporate campuses more efficiently. Olli is fueled by your collective brains and allows for natural interaction with the vehicle using IBM Watson’s IoT cognitive computing capabilities.
Olli has more than 30 sensors which are embedded in the vehicle that collect transportation data as the vehicle is in motion. Using cognitive computing, Olli can analyze and learn from that collected data. New sensors can be continuously added and adjusted as passenger needs and local preferences are identified. Olli’s knowledge grows based on the interaction with its passengers.

Here’s how Olli works via Watson. A passenger can ask a question or specific vehicle functions on entering the vehicle. By example, “Olli can you take me to the Lincoln Memorial” or “how does this feature work?”. Passengers will also be able to ask for recommendations on local destinations or historical sites based on analysis of personal preferences. Olli learns as it moves and as each passenger asks for destinations it stores and remembers that for the next person.  
Local Motors hopes that Olli can help reduce individual driving at the same time increase the efficiency of rides-on-demand which can help reduce the carbon footprint of cities and corporate or academic campuses.

Wednesday, June 22, 2016

Acura Built an Electric NSX to Tackle Pikes Peak

As reported by Engadget: Acura's eagerly anticipated next-gen NSX is finally going into production for 2017, but the car will hit the road before then -- sort of. The company will race a highly modified version at the Pikes Peak hill climb event on June 26th. However, unlike the (mostly) gas-powered consumer model, The "EV Concept" race vehicle will be powered by four electric motors, one on each wheel. That means it looks roughly the same as a production NSX (other than the scoop and wing), but the custom EV drive train is completely different and built for racing.

The company hasn't said how much power the motors make, but they will give the car something called "four-wheel torque vectoring." That means engineers can dial a precise amount of power to each wheel, making it perform better in corners and when accelerating. The car also uses regenerative braking to extend the battery life.



Electric vehicles are ideal for Pikes Peak, since they aren't affected by the 14,000 foot elevation that chokes gas-powered engines. Last year, Rhys Millen raced a modified eo PP03 up the track in 9:07.222, a time that would have won the gas-powered unlimited class in every year but 2013 and 2014. (Sebastien Loeb holds the unlimited record at 8:13.878, a time set in 2013).

The Acura NSX production car, set to arrive next year for around $150,000, is an odd vehicle. It has a turbocharged 500HP V6, but uses three small electric motors to boost acceleration and cut turbo lag. That gives it stunning acceleration, but purists are worried. The original NSX weighed just 2,712 pounds and was loved for its lack of excess, but the new model reportedly tips the scale at 3,800 pounds, thanks to the hybrid powertrain.







Elon Musk's Companies Team Up: Tesla Offers to Buy SolarCity

As reported by Engadget: Tesla Motors and SolarCity have always had a close link (Elon Musk is the chairman of both companies, and SolarCity was founded by two of his cousins) but now they may come under one roof. They already pair up on charging stations and power for off-grid homes, but Tesla is offering to acquire the energy company, saying it wants to provide its customers with access to the "most sustainable energy source available: the sun." Soon, you might be able to shop for solar panels, home batteries and an electric call all in one place.

The way Tesla sees it, linking up a solar panel, Powerwall battery and Model S/3/X electric vehicle means offering a more efficient way for customers to consumer energy that's vertically integrated. On a call with reporters, Elon Musk said the all-stock deal would end up with a price between $2.5 and $3 billion. He also said that it shouldn't impact plans for the Model 3 or Gigafactory going forward. According to Musk, "we're not an automotive company," pointing at the bigger issues it hopes to address around providing and using sustainable energy sources.

Tuesday, June 21, 2016

DOT and FAA Finalize Rules for Small Unmanned Aircraft Systems

From the FAAToday, the Department of Transportation’s Federal Aviation Administration has finalized the first operational rules (PDF) for routine commercial use of small unmanned aircraft systems (UAS or “drones”), opening pathways towards fully integrating UAS into the nation’s airspace. These new regulations work to harness new innovations safely, to spur job growth, advance critical scientific research and save lives.
“We are part of a new era in aviation, and the potential for unmanned aircraft will make it safer and easier to do certain jobs, gather information, and deploy disaster relief,” said U.S. Transportation Secretary Anthony Foxx. “We look forward to working with the aviation community to support innovation, while maintaining our standards as the safest and most complex airspace in the world.”
According to industry estimates, the rule could generate more than $82 billion for the U.S. economy and create more than 100,000 new jobs over the next 10 years.
The new rule, which takes effect in late August, offers safety regulations for unmanned aircraft drones weighing less than 55 pounds that are conducting non-hobbyist operations.
The rule’s provisions are designed to minimize risks to other aircraft and people and property on the ground. The regulations require pilots to keep an unmanned aircraft within visual line of sight. Operations are allowed during daylight and during twilight if the drone has anti-collision lights. The new regulations also address height and speed restrictions and other operational limits, such as prohibiting flights over unprotected people on the ground who aren’t directly participating in the UAS operation.
The FAA is offering a process to waive some restrictions if an operator proves the proposed flight will be conducted safely under a waiver. The FAA will make an online portal available to apply for these waivers in the months ahead.
“With this new rule, we are taking a careful and deliberate approach that balances the need to deploy this new technology with the FAA’s mission to protect public safety,” said FAA Administrator Michael Huerta. “But this is just our first step. We’re already working on additional rules that will expand the range of operations.”
Under the final rule, the person actually flying a drone must be at least 16 years old and have a remote pilot certificate with a small UAS rating, or be directly supervised by someone with such a certificate. To qualify for a remote pilot certificate, an individual must either pass an initial aeronautical knowledge test at an FAA-approved knowledge testing center or have an existing non-student Part 61 pilot certificate. If qualifying under the latter provision, a pilot must have completed a flight review in the previous 24 months and must take a UAS online training course provided by the FAA. The TSA will conduct a security background check of all remote pilot applications prior to issuance of a certificate.
Operators are responsible for ensuring a drone is safe before flying, but the FAA is not requiring small UAS to comply with current agency airworthiness standards or aircraft certification. Instead, the remote pilot will simply have to perform a preflight visual and operational check of the small UAS to ensure that safety-pertinent systems are functioning property.  This includes checking the communications link between the control station and the UAS.
Although the new rule does not specifically deal with privacy issues in the use of drones, and the FAA does not regulate how UAS gather data on people or property, the FAA is acting to address privacy considerations in this area. The FAA strongly encourages all UAS pilots to check local and state laws before gathering information through remote sensing technology or photography.
As part of a privacy education campaign, the agency will provide all drone users with recommended privacy guidelines as part of the UAS registration process and through the FAA’s B4UFly mobile app. The FAA also will educate all commercial drone pilots on privacy during their pilot certification process; and will issue new guidance to local and state governments on drone privacy issues. The FAA’s effort builds on the privacy “best practices” (PDF) the National Telecommunications and Information Administration published last month as the result of a year-long outreach initiative with privacy advocates and industry.
Part 107 will not apply to model aircraft.  Model aircraft operators must continue to satisfy all the criteria specified in Section 336 of Public Law 112-95 (PDF) (which will now be codified in Part 101), including the stipulation they be operated only for hobby or recreational purposes.

Firefly Rocket Engine Looks Luminous During Test

As reported by Space.com: A white, hot column of flame firing out of a rocket engine, backdropped by white clouds and a blue sky, looks like a work of art in this photo from the private company Firefly Space Systems.

This luminous image was posted to the company's Twitter account on June 10, and shows a single engine — one of 12 that will be included on the completed Firefly Alpha 'aerospike' rocket. The aerospike design uses engine nozzles with a slightly different shape compared to the bell-shaped nozzles seen on many other rocket engines.



Firefly is a company aiming to build "low-cost, high-performance space launch capability for the underserved small satellite market," according to the company's website. The company's first launch with its Firefly Alpha vehicle is scheduled for March 2018. That will be the first of four launches contracted by NASA.

In the picture, the engine is attached to the "life ring," which will hold all 12 engines when the rocket is fully constructed. (Many rocket designs have multiple engines, such as SpaceX's Falcon 9 rocket, which has nine engines.)

The aerospike engine design has been around since the 1960s, a representative for Firefly told Space.com via email, but the company believes it "will have the first aerospike engine in production when Firefly Alpha becomes operational in early 2018," he said.

Hyperloop One Team Dreams of Connecting Europe and China

As reported by Engadget: Hyperloop One has teamed up with the city of Moscow and a local company to explore bringing the Hyperloop to Russia. The trio will investigate how and where such high-speed transportation can be integrated into the country's existing transport network. Since Moscow itself has a population of 16 million people, cheap, quick and reliable mass transit is always worthy of further study. But the wider picture is that Hyperloop One views this as the first step on building a new high-speed freight link between Europe and China.

As co-founder Shervin Pishevar explains, Hyperloop could form the backbone of a "transformative new Silk Road: a cargo Hyperloop that whisks freight containers from China to Europe in a day." That would reduce shipping times from weeks (as it currently stands) and lighten the load on container ships. It helps, too, that the local company Hyperloop has partnered with is, essentially, the ideal company to actually build the system out.

Hyperloop cargo carriers have been proposed
as an alternative to train, trucking, air and ship
based transportation of cargo.
Summa Group is an investment and construction conglomerate that can probably knock out a passable Hyperloop without any outside help. For instance, it already owns Russia's largest sea port, three different construction companies and a logistics company. Then there's the fact that it's already got its own oil-and-gas plant and experience of building oil pipelines -- sealed metal tubes that travel large distances across the country. Given that Hyperloop will also rely upon the same technology, such expertise will come in very handily indeed.

Monday, June 20, 2016

NASA Will Test an Experimental Hybrid X-Plane with 14 Electric Motors

As reported by The VergeNASA is still testing wild new wing technologies to improve energy efficiency in flight. The agency announced yesterday that it is conducting research on a unique wing design that uses 14 electric motors. The experimental aircraft it's designing is called X-57, otherwise known as "Maxwell."
The X-57 is NASA's first X-plane in a decade, and the plan is to develop technologies that improve fuel use and emissions and reduce noise, while also potentially paving the way to faster and more efficient small aircraft. "With the return of piloted X-planes to NASA’s research capabilities – which is a key part of our 10-year-long New Aviation Horizons initiative – the general aviation-sized X-57 will take the first step in opening a new era of aviation," said NASA Administrator Charles Bolden.
PAVING THE WAY TO FASTER AND MORE EFFICIENT SMALL AIRCRAFT
The Maxwell, which is named after 19th century Scottish physicist James Clerk Maxwell, will be built by the Scalable Convergent Electric Propulsion Technology Operations Research (Sceptor) project. The aircraft itself will be a modified Tecnam P2006T, outfitted with 14 motors for propulsion. Researchers hope to prove that using that many motors can reduce the amount of energy required to reach a cruising speed of 175 mph.
NASA has been doing this research for X-planes for some time, and it'll be awhile before these experimental planes are ready. NASA also awarded Lockheed Martin $20 million for the company to develop its own supersonic X-plane designs. NASA hopes that these efforts represent the future of flight. Here's hoping they're right.