Search This Blog

Monday, June 29, 2015

Paired with AI and VR, Google Earth Could Change the Planet

As reported by Wired: THE JAMES RESERVE is a place where the natural meets the digital.

Part of the San Jacinto mountain range in Southern California, the James is a nature reserve that covers nearly 30 acres. It’s closed to the public. It’s off the grid. Vehicles aren’t allowed. But Sean Askay calls it “one of the most heavily instrumented places in the US.” Robots on high-tension cables drop climate sensors into this high-altitude forest. Bird’s nests include automated cameras and their own sensors. Overseen by the University of California, Riverside, the reserve doubles as a research field station for biologists, academics, and commercial scientists.

In 2005, as a master’s student at the university, Askay took the experiment further still, using Google Earth to create a visual interface for all those cameras and sensors. “Basically, I built a virtual representation of the entire reserve,” he says. “You could ‘fly in’ and look at live video feeds or temperature graphs from inside a bird box.”

Somewhere along the way, the project caught the eye of Google’s Vint Cerf, a founding father of the Internet, and in 2007, Askay moved to Mountain View, California, home to Google headquarters. There, he joined the team that ran Google Earth, a sweeping software service that blends satellite photos and other images to create a digital window onto our planet (and other celestial bodies). Since joining the company, the 36-year-old has used the tool to build maps of war casualties in Iraq and Afghanistan. He put the service on the International Space Station, so astronauts could better understand where they were. Working alongside Buzz Aldrin, he built a digital tour of the Apollo 11 moon landing.

Now, as Google Earth celebrates its 10th anniversary, Askay is taking over the entire project—as lead engineer—following the departure of founder Brian McClendon. He takes over at a time when the service is poised to evolve into a far more powerful research tool, an enormous echo of his work at the James Reserve. When it debuted in 2005, Google Earth was a wonderfully intriguing novelty. From your personal computer, you could zoom in on the roof of your house or get a bird’s eye view of the park where you made out with your first girlfriend. But it proved to be more than just a party trick. And with the rapid rise of two other digital technologies—neural networks and virtual reality—the possibilities will only expand.
Click to Open Overlay Gallery
Through an extension to Google’s Chrome web browser called Earth View, you can view “the most beautiful and striking” satellite images from around the world, “diving in” to places like Cuba. GOOGLE

A Visit to Prague
Neural networks—vast networks of machines that mimic the web of neurons in the human brain—can scour Google Earth in search of deforestation. They can track agricultural crops across the globe in an effort to identify future food shortages. They can examine the world’s oil tankers in an effort to predict gas prices. And it so happens that Google runs one of the most advanced neural networking operations in the world. For Google Earth, Askay says, “machine learning is the next frontier.”

According to Askay’s boss, Rebecca Moore, the company is already using neural networks to examine Google’s vast trove of satellite imagery. “We have the Google Brain,” she says, referring to the central neural networking operation Google has built inside the company, “and we’re doing some experiments.” That’s news. But it’s not that surprising. Two startups—Orbital Insight and Descartes Labs—are already doing much the same thing.

Meanwhile, virtual reality—as exhibited by headsets like Facebook’s Oculus Rift and Google Cardboard—is bringing a new level of fidelity and, indeed, realism to the kind of immersive digital experience offered by Google Earth. Today, using satellite imagery and street-level photos, Askay and Google are already building 3-D models of real-life places like Prague that you can visit from your desktop PC (see video at top). But in the near future, this experience will move into Oculus-like headsets, which can make you feel like you’re really there.

“We have so much interesting stuff,” Askay says of Google Earth’s massive collection of images. “How amazing would it be to experience Google Earth in that environment?”

The Google Outreach
Google isn’t the only one that will drive the evolution of Google Earth. In 2007, not long after taking the job at Google, Askay flew to Brazil, helping an indigenous tribe, the Surui, map deforestation in their area of the Amazon, and this gave rise to a wider project called Google Earth Engine. With Earth Engine, outside developers and companies can use Google’s enormous network of data centers to run sweeping calculations on the company’s satellite imagery and other environmental data, a digital catalog that dates back more than 40 years.

“So, if you want to look at 40 years of Landsat imagery and do change projection over time, you can,” Askay says. “You could do retrospective models of where deforestation took place and how fast, as well as predictive models and even near real-time detection. We’re getting to the point where we can start sending alerts saying that something that looks like deforestation has occurred in the last three days.”

As it stands, Earth Engine is only available to a limited number of outsiders, but Askay and Moore say Google plans to gradually open it up to a much larger audience. With a project called Map of Life, independent researchers are already examining how global warming in changing the habitat ranges of particular animal species. Others are working to track water resources. The World Resources Institute now uses the service to provide a map of deforestation not only in the Amazon, but across the globe.

Learning Gets Deep
At the moment, this map is generated with traditional computing techniques. But according to WIR chief technology officer Aaron Steele, the organization is now building a system that can expand, accelerate, and improve the process with neural networking. At companies like Google and Facebook, “deep learning” has already recognizing faces and objects in online photos uploaded by everyday internet users, and many believe the technology can significantly accelerate the analysis of satellite imagery—and to much greater effect.

“It’s a real breakthrough in computer vision, though in order to make it work, you need a whole lot of compute power,” says Steven Brumby, a former Los Alamos National Lab researcher and co-founder of Descartes Labs. “The opportunity is enormous.”

In a recent months, Google has shown how effective this AI technology can be in analyzing ground-level photos captured as part of its Street View project. In building its online maps, Google once used human editors to identify addresses in photos. Now, neural networking does this automatically.

James Crawford, an ex-Googler and the CEO of Orbital Insights, a company dedicated to examining satellite imagery with neural networks, agrees that Google Earth is ripe for this kind of automatic analysis. But after using Google Earth Engine as an outside developer, he says the service may need to evolve further before it’s suitable to such work. “The level of control we need in our pipeline, it didn’t really work for us,” he says. “But that could change.”

The Cardboard Effect
Elsewhere at Google, an eclectic team of engineers are building a virtual reality system for use with headsets that strap around the eyes. It began with a “20 percent” project called Google Cardboard, a headset made out of cardboard—literally—that works in tandem with your smartphone. In the beginning, this seemed like an ironic comment on the wider push toward virtual reality. But it has evolved into something far more serious.

These engineers have designed 16-lens cameras that can capture 360-degree stereoscopic images of the real world. GoPro will soon offer these cameras to the world at large. And Google is offering a service that can stitch those images into a 360-degree digital environment for viewing in Cardboard and, potentially, other headsets. “We have ambitions beyond just Cardboard,” project leader Clay Bavor told us last month. “There are many other things going on.”

The project is natural fit for Google Earth. The Cardboard team recently unveiled what it calls Google Expeditions, a way for school students to experience distant lands via the headset, and the concept is that much more attractive in the context of the earth as a whole. “You can imagine this as a Google Earth experience,” Askay says.

For Moore, this kind of thing isn’t a novelty. It’s education. “It’s not just for fun and gaming,” she says. “It can give people a more immersive understanding of the planet—places that matter and places that are changing.”
Street View now includes “special collections” that show off places like the Great Barrier Reef. GOOGLE

A New GlobeIt’s also worth remembering that Google now has its own satellite company. Last summer, it acquired Skybox, a startup that uses cube satellites to take more frequent and higher resolution photos from the skies. According to Askay and Moore, Google hasn’t yet incorporated the Skybox imagery into Google Earth. But this will come.

On one level, the prospect of pairing Skybox with technology such as neural networks is a frightening thing—another erosion of privacy in the physical world. But it also brings enormous possibilities. Today, Google Earth is a nice way to look at the planet—not to the mention Mars, the Moon, and the heavens. But in the years to come, it will grow into something else. Virtual reality will bring new fidelity. And AI and other types of data analysis will bring a new understanding our planet.

“What I’m looking forward to is combining Google Earth with the kind of dynamic data coming out of Earth Engine—data on deforestation, floods, temperatures,” Moore says. “If you render that kind of information on Google Earth, it becomes a living, breathing dashboard of the planet. You can put in everyone’s hands, not just charts and graphs of what’s going on, but high-resolution information that’s sitting, almost literally, on the surface of the earth.” It’s like Askay’s work at the James Reserve. But on much larger scale.

June 30th Gets a Leap Second Because Earth's Rotation is Slowing Down

As reported by GizmodoIf you’re the sort of person who lives by the motto that every second counts, next week, you get to put your money where your mouth is. That’s because, as we first learned back in January, we’re all being gifted a leap second on June 30th.

Leap seconds can wreak havoc across the Internet, but, as NASA explained in detail this week, they’re essential in order to compensate for our planet’s slowing rotation.
Most of us live our lives in the steadfast world of coordinated universal time (UTC), where Earth days are treated as precisely 86,400 seconds long. But in the real world, days haven’t been that long since about 1820. That’s because a gravitational tug-of-war between the Earth and the moon is causing our planet’s rotation to slow down, making the days a wee bit longer as the years roll on. Today, the average day is approximately 86,400.002 seconds long.
You might be thinking: Okay, that’s interesting, but who’s really counting? Scientists, of course! As NASA explains in the video below, Earth scientists monitor precisely how long it takes our planet to complete a full rotation (i.e., a day) using a technique called Very Long Baseline Interferometry (VLBI). This essentially involves collating data from a worldwide network of stations every single day. And the results are not always predictable. Day length, it turns out, is influenced by everything from tectonic activity to groundwater to El Nino events.
Because day length as measured by VLBI pretty much never hits 86,400 seconds on the nose, scientists have created a second time standard, Universal Time 1, based on the Earth’s precise rotation. When UT1 and UTC drift too far apart, leap seconds are added to keep the two time scales within 0.9 seconds of each other. That’s why, as the hour approaches midnight on Tuesday, the clock will strike 23:59:60 before rolling over to 0:0:0 on July 1st.
Try to make the most of that extra second, even if the Internet has an aneurysm. After all, not even Earth’s brightest scientists can predict when the next one’s coming.
The prevent any Internet mayhem, Google has been using a technique called 'leap smear' so that there will be no confusion by computer systems over the time during the leap second addition.  Still there may be some issues: the Chinese BeiDou 'GPS' system day numbering could cause some errors for GNSS systems utilizing that location and timing system.

Sunday, June 28, 2015

World’s First 3D Printed Supercar is Unveiled

As reported by 3dPrint: The automobile industry has been relatively stagnant for the past several decades. While new car designs are released annually, and computer technology has advanced by leaps and bounds, the manufacturing processes and the effects that these processes have on our environment have remain relatively unchanged. Over the past decade or so, 3D printing has shown some promise in the manufacturing of automobiles, yet it has not quite lived up to its potential, at least according to Kevin Czinger, founder and CEO of a company called Divergent Microfactories (DM).
dm1
The Blade 3D Printed Supercar
Today, at the O’Reilly Solid Conference in San Francisco, Kevin Czinger is about to shock the world with a keynote presentation he will give titled, “Dematerializing Auto Manufacturing.”
“Divergent Microfactories is going to unveil a supercar that is built based on 3D printed parts,” Manny Vara of LMG PR tells 3DPrint.com. “It is very light and super fast — can you say faster acceleration than a McLaren P1, and 2x the power-to-weight ratio of a Bugatti Veyron? But the car itself is only part of the story. The company is actually trying to completely change how cars are made in order to hugely reduce the amount of materials, power, pollution and cost associated with making traditional cars.”
The vehicle, called the Blade, has 1/3 the emissions of an electric car and 1/50 the factory capital costs of other manufactured cars.  Unlike previous 3D printed vehicles that we have seen, such as Local Motors’ car that they have printed several times, DM’s manufacturing process differs quite a bit. Instead of 3D printing an entire vehicle, they 3D print aluminum ‘nodes’ which act in a similar fashion to Lego blocks. 3D printing allows DM to create elaborate and complex shaped nodes which are then joined together by off-the-shelf carbon fiber tubing. Once the nodes are printed, the chassis of a car can be completely assembled in a matter of minutes by semiskilled workers. The process of constructing the chassis is one which requires much less capital and other resources, and doesn’t require the extremely skilled and trained workers that other car manufacturing techniques rely on. The important goal that DM is striving for, and it appears they have accomplished, is the reduction of pollution and environmental impact.
Individual 3D printed aluminum nodes
Individual 3D printed aluminum nodes
Today, Czinger and the rest of the team at Divergent Microfactories will be unveiling their first prototype car, the Blade.
“Society has made great strides in its awareness and adoption of cleaner and greener cars,” explains CEO Kevin Czinger. “The problem is that while these cars do now exist, the actual manufacturing of them is anything but environmentally friendly. At Divergent Microfactories, we’ve found a way to make automobiles that holds the promise of radically reducing the resource use and pollution generated by manufacturing. It also holds the promise of making large-scale car manufacturing affordable for small teams of innovators. And as Blade proves, we’ve done it without sacrificing style or substance. We’ve developed a sustainable path forward for the car industry that we believe will result in a renaissance in car manufacturing, with innovative, eco-friendly cars like Blade being designed and built in microfactories around the world.”
Assembling of the 3D printed nodes and carbon fiber tubing to construct the chassis
Assembling of the 3D printed nodes and carbon fiber tubing to construct the chassis
The Blade is one heck of a supercar, capable of going from 0-60 MPH in a mere 2.2 seconds. It weighs just 1,400 pounds, and is powered by a 4-cylinder 700-horsepower bi-fuel internal combustion engine that is capable of using either gasoline or compressed natural gas as fuel. The car chassis is made up of approximately 70 3D printed aluminum nodes, and it took only 30 minutes to build the chassis by hand. The chassis itself weighs just 61 pounds.
“The body of the car is composite,” Vara tells us. “One cool thing is that the body itself is not structural, so you could build it out of just about any material, even something like spandex. The important piece, structurally, is the chassis.”
Kevin Czinger, Founder and CEO, Divergent Microfactories, Inc. with the Blade Supercar
Kevin Czinger, Founder and CEO, Divergent Microfactories, Inc. with the Blade Supercar
The initial plan is for DM to scale up to an annual production of 10,000 of these limited supercars, making them available to potential customers. This isn’t all though, as DM doesn’t merely plan on just being satisfied by manufacturing cars via this method. They plan on making the technology available to others as well. On top of selling these supercars, they will also sell the tools and technologies so that small teams of innovators and entrepreneurs can open microfactories and build their own cars, based on their own unique designs. Whether it is a sedan, pickup truck or another type of supercar, it is all possible with this proprietary 3D printed node technology.
Pre-painted Blade supercar
Pre-painted Blade supercar
The node-enabled chassis of cars built using this unique 3D printing method, are up to 90% lighter, much stronger, and more durable than cars built with more traditional techniques. Could we be looking at a great ideology change within the automobile manufacturing industry? Lighter, stronger, more durable, more affordable, environmentally satisfying vehicles are definitely something that just about anyone should consider a step in the right direction.
3D printing has been touted as a technology of the future, for the future, enabling individual customization of many products. Now, the ability for entrepreneurs to enter an industry previously overrun by huge corporations could mean a future with individualized, custom vehicles which perform and appear just the way we want them. If Divergent Microfactories has a say, this will be our future, and that future isn’t too far off.
pre-painted Blade supercar
Pre-painted Blade supercar
What do you think about this 3D printed supercar? Do you like the idea of entrepreneurs having an opportunity to fabricate their own line of vehicles? Is DM onto something with this unique method of automobile manufacturing? Discuss in the Divergent Microfactories 3D Printed Supercar Forum thread on 3DPB.com.  Check out the video below.

blade1

Saturday, June 27, 2015

Virtually Climb El Capitan with Google's First Vertical Street View

As reported by LA Times: Google Maps has announced its first vertical Street View, giving people the opportunity to virtually climb El Capitan in Yosemite National Park.

"People around the world will now be able to virtually experience the unique act of ascending a 3,000-foot cliff by going on a self-directed, vertical climb," the Mountain View, Calif., company said. "Climbers" can make their way up the Nose route and part of the Dawn Wall.

To collect the imagery for Google Maps, the company worked with photographers and partnered with climbers Lynn Hill, Alex Honnold and Tommy Caldwell.

"Yosemite’s driven so much of my life that I’m excited to be able to share it with the world through my eyes," Caldwell said. "These 360-degree panoramic images are the closest thing I’ve ever witnessed to actually being thousands of feet up a vertical rock face -- better than any video or photo. But my hope is that this new imagery will inspire you to get out there and see Yosemite for yourself."


Along the route, and at more than 20 other spots across the broad face of El Capitan, armchair climbers can look around in all directions — down to the floor of Yosemite Valley, up the blank face to the top of the cliff, at the broad view of Yosemite National Park’s other granite monoliths and up close at the pebbled grain and cracks of El Capitan itself.

To check out more of Caldwell's experience working with Google, including the challenges of capturing the difficult ascent up the famous rock face, you can read his blog post here.

For now, vertical Street View is available only for El Capitan, but Google spokeswoman Susan Cadrecha said the company would "continue to try and expand the limits -- and reach new heights -- for Street View moving forward."

It was Russell’s idea to apply Street View to El Capitan, which is a three- or four-hour drive from Google’s Mountain View, Calif., headquarters. As it continues to use Street View to photograph and map many millions of miles of the Earth’s roads, the company is increasingly using the equipment away from populated areas. It has, for example, attached cameras to two rafts floating down the Colorado River through the Grand Canyon.

The New York Times has an interactive feature about the climb as well.



Friday, June 26, 2015

'No hoax': Lexus creates a hoverboard

As reported by USA Today: Toyota's luxury brand Lexus said Wednesday it has created a hoverboard.

Yes, a hoverboard -- as in something that looks like a skateboard without wheels that can hover above the ground like the character Marty McFly rode in theBack to the Future movie trilogy.

"It works. It's not a hoax," says spokesman Moe Durand.

Lexus says it won't be sold. It's for demonstration purposes. It operates using magnetic levitation, with liquid nitrogen-cooled superconductors and permanent magnets that "combine to allow Lexus to create the impossible." It says it is working with the world's leading experts in super-conductive technology.

As cool as that sounds, there are some major limitations. Since it operates magnetically, it only can hover over a steel surface. And it also only works as long as the liquid nitrogen holds out.


The auto brand released pictures of the hoverboard floating above the ground, but no pictures of it in motion or with anyone standing on it. Durand says, however, it can support weight. Limitations aside, the hoverboard is sure to win fans -- maybe even sell a few cars.

"At Lexus, we constantly challenge ourselves and our partners to push the boundaries of what is possible," said Mark Templin, executive vice president for Lexus International, in a statement. "That determination, combined with our passion and expertise for design and innovation, is what led us to take on the Hoverboard project."

Lexus says the board is being tested in Barcelona, Spain. It's the perfect example of the amazing things that can be achieved when you combine technology, design and imagination."

For now, it's mostly about promotion. Lexus tried to give it the look of one of its cars with a design that mimics its bold hourglass-shaped grilles. It says it is made with a range of materials, including bamboo.

Thursday, June 25, 2015

Here’s a Perfect Example of Why We Need More Consumer Drone Regulation

As reported by Robotic Trends: Listen, I’m all for personal freedom and less government infringement on our everyday lives. But the current wildfires sweeping across California are a perfect example, unfortunately, as to why stricter consumer drone regulation might be needed.

In the last week, state and federal firefighters have fought more than 270 wildfires in California alone. One fire burned nearly 18,000 acres of land and cost more than $7 million to contain.

Here’s the problem: firefighters are seeing more unauthorized consumer drones flying over active wildfires. Maybe the drone owners don’t know or maybe they don’t care, but temporary flight restrictions are placed over wildfire areas due to the aircraft used to help contain the fires.

Aircraft is used during wildfires to knock down flames and survey the burn area. When drones are in that restricted airspace, they’re in the path of aircraft.


“A couple times yesterday we noticed some drones in our airspace,” said Cal Fire’s Steve Kaufmann (watch the KSEE video below).“I can’t encourage the public enough that when we have a fire in the area, they really need to try to have restraint.”

“Some of the hobbyist drones will get up in the air, and if their drone is in the air, we actually have to cease our air operations until we can get our arms around that,” he added.

The near-collisions between drones and commercial airplanes was enough to get the Consumer Drone Safety Act introduced, can you imagine the negative effects one crash, or one wildfire spiraling even further out of control, could have on hobbyist drones?

If you need more evidence of how some drone hobbyists are crossing the line, check out the video below, which you might have already seen, of John Thompson flying his drone over an active house fire. Eventually a firefighter sprays the drone (12 minutes into the video) and forces Thompson to fly away. Thompson took to Facebook and accused the firefighters of misconduct and said he would bill them to replace the $2,200 drone.

Thankfully, many commenters said Thompson was in the wrong. Again, I’m all for a laissez-faire system when it comes to flying consumer drones, but if we can’t police ourselves, we’re only asking for stricter regulation.

Wednesday, June 24, 2015

Deus ex Vehiculum: Security in the Age of Computerized Cars

As reported by the EconomistOne ingenious conceit employed to great effect by science-fiction writers is the sentient machine bent on pursuing an inner mission of its own, from HAL in “2001: A Space Odyssey” to V.I.K.I. in the film version of "I Robot". Usually, humanity thwarts the rogue machine in question, but not always. In “Gridiron”, released in 1995, a computer system called Ismael—which controls the heating, lighting, lifts and everything else in a skyscraper in Los Angeles—runs amok and wreaks havoc on its occupants. The story's cataclysmic conclusion involves Ismael instructing the skyscraper’s computer-controlled hydraulic shock-absorbers (installed to damp the swaying caused by earthquakes) to shake the building, literally, to pieces. As it does so, Ismael’s cyber-spirit flees the crumbling tower by e-mailing a copy of its malevolent code to a diaspora of like-minded computers elsewhere in the world.

While vengeful cyber-spirits may not lurk inside today’s buildings or machines, malevolent humans frequently do. Taking control remotely of modern cars, for instance, has become distressingly easy for hackers, given the proliferation of wireless-connected processors now used to run everything from keyless entry and engine ignition to brakes, steering, tire pressure, throttle setting, transmission and anti-collision systems. Today’s vehicles have anything from 20 to 100 electronic control units (ECUs) managing their various electro-mechanical systems. Without adequate protection, the “connected car” can be every bit as vulnerable to attack and subversion as any computer network. 

Were that not worrisome enough, motorists can expect further cyber-mischief once vehicle-to-vehicle (V2V) communication becomes prevalent, and cars are endowed with their own IP addresses and internet connections. Meanwhile, car makers are beginning to offer over-the-air updates, using cellular connections, for patching flaws in their vehicles’ software. This makes it easier for attackers to infiltrate not just the odd vehicle, but thousands of them at a time. BMW recently beamed an over-the-air software update to 2.2 million of its customers’ cars. The potential for fleet-wide cyber-attacks ought to have car-makers seriously concerned.

Nor is it just vehicle theft motorists have to worry about. Car hacking can threaten people’s lives, both in the vehicle and outside it. The mind shudders at the thought of malicious code being inserted remotely into the logic of a self-driving car speeding autonomously down the highway.

This is not science fiction. Land Rover recently demonstrated a smartphone app that lets an owner take wireless control of his machine while up to ten meters (33 feet) away from it. The aim, says Land Rover, is to let off-road drivers maneuver their vehicles safely over dangerous stretches of terrain, or to assist urban motorists trying to back a vehicle out of a tight parking spot. Fine, except that such a level of remote control could also make it easier for thieves to steal parked cars, or terrorists to create chaos on the road. 

What is being done to protect vehicles from cyber-attack? Several recent events have stirred legislators into action. Last summer, for instance, during a meeting of automotive engineers and security experts, a 14-year-old schoolboy showed industry experts how to take control of a car remotely using circuitry he had lashed up overnight with $15 worth of parts bought from Radio Shack the day before. The youngster turned the windscreen wipers on and off, locked and unlocked the doors, engaged the engine-start mechanism, and had the headlamps flash to the beat of a tune on his iPhone. “It was mind-blowing,” recounted Andrew Brown, vice-president and chief technologist at Delphi Automotive, a manufacturer of auto parts.

More recently, Consumer Reports, a publication owned by a consumer advocacy and independent testing center in Yonkers, New York, got an eye-opener during a visit to a National Highway Traffic Safety Administration (NHTSA) laboratory. The publication’s editors were surprised when a technician turned off the engine of a test car they were driving using nothing more than a mobile phone. NHTSA has found ways of tampering remotely with door locks, seat-belt tensioning, instrument panels, brakes, steering mechanisms and engines—all while the test cars were being driven. Since its laboratory visit, Consumer Reports has been urging America's Congress to legislate for the highest possible security standards for car computer systems.

The message seems to be getting through. In recent weeks, the House Committee on Energy and Commerce has questioned all 17 motor manufacturers that sell vehicles in America, as well as NHTSA itself, about their plans to thwart car hackers. For its part, NHTSA has compiled a 40-page report on how best to deal with cyber-threats on the road. The safety agency has shared its findings with car-makers, but has been understandably reluctant to publicize the counter-measures in detail. 

The problem confronting car-makers everywhere is that, as they add ever more ECUs to their vehicles, to provide more features and convenience for motorists, they unwittingly expand the “attack surface” of their on-board systems. In security terms, this attack surface—the exposure a system presents in terms of its reachable and exploitable vulnerabilities—determines the ease, or otherwise, with which hackers can take control of a system.

In a car, the remote attack surface includes such things as the vehicle’s on-board diagnostics, Bluetooth and WiFi ports, telematic devices like GPS navigation and cellular radios, plus radio-frequency chips in remote entry keys, tire pressure sensors and the like that communicate wirelessly with transponders connected to the vehicle’s Controller Area Network (CAN).

By functioning as a common communications bus, the CAN’s two-wire network for transmitting digital messages around a vehicle allows manufacturers to add features and accessories to a vehicle simply by plugging the additional components into the bus, instead of having to run fresh wires or install additional networks. That makes wiring the innards of cars easier and cheaper.

But by multiplexing signals from different devices on the CAN’s common communications channel, it is possible for vulnerabilities associated with an attack surface to talk to components that perform actual driving functions. For instance, it is not far-fetched to imagine an on-board cellular connection (such as GM’s OnStar network) being tricked into allowing hackers to inject malicious code into ECUs managing, say, the steering, braking or engine controls—courtesy of the shared CAN bus.

By far the best study to date of vehicle security is a survey carried out by Charlie Miller, formerly with the National Security Agency and now at Twitter, and Chris Valasek of IOActive, a security services company based in Seattle. The two researchers examined the remote attack surfaces of 20 popular models on American roads. In each case, they traced the network architecture along with all the computer-controlled features of the vehicles involved. In doing so, they were able to draw conclusions about how vulnerable, in principle, the various vehicles were to remote attack.

Of the half dozen attack surfaces Dr Miller and Mr Valasek analysed in detail for each vehicle, the most vulnerable in all instances turned out to be the on-board Bluetooth feature (“a very reliable entry point for attackers”), a car’s cellular radio service (“the holy grail of automotive attack”), and any browser-based internet connection available (“widely understood by attackers”).

The three most hackable vehicles—in terms of how their network architectures permitted attack surfaces to talk to components performing physical actions—were the 2014 Jeep Cherokee, the 2015 Cadillac Escalade and the 2014 Infiniti Q50. This being litigious America, the automakers concerned quickly found themselves in the legal cross-hairs, as owners sought financial compensation for their vehicles’ perceived vulnerabilities.

One conclusion of the study is that, like computer networks, vehicles need layered defenses, so that penetrating to the heart of the system, though not impossible, becomes increasingly tedious and costly for an attacker. Another obvious suggestion is that automotive networks like the CAN bus, along with its local interconnections, should be designed in a way that isolates ECUs that talk to the outside world from those that control critical functions within the vehicle.

Ultimately, of course, cars are going to need some method of detecting cyber-attacks, and to have the means to neutralize them. In one important way, threat detection is easier in cars than in the networks used in offices. On a CAN bus, for instance, only ECUs are engaged in swapping messages with one another; no gullible humans are involved—as they are in offices—to open back doors unwittingly to phishing attacks from cyber-crooks masquerading as colleagues or customers.

That makes it easier to spot anomalies caused by an attacker’s injected code. To capture the attention of a targeted ECU, a bogus message has to be sent at a much higher rate—anything up to 100 times normal—in order to swamp legitimate messages being received by the processor. A simple device that plugs into a car’s diagnostic port can easily detect such exceptional traffic and instruct the CAN bus to ditch it.

That is a good start. But it does not mean cars can be made immune to cyber-attack. There is no such thing as absolute security. As Dr Miller and Mr Valasek note, even firms like Microsoft and Google have been unable to make a web browser that cannot go a few months without needing some critical security patch. Cars are no different. All the more so once they start communicating with one another, as well as with traffic signs and other roadside equipment.