Search This Blog

Wednesday, March 18, 2015

Could Human-Driven Cars Become Illegal?

As reported by Huffington PostSelf-driving cars might be a novelty today. But in the not-too-distant future, they could become common.

Eventually, autonomous cars might prove to be so much safer than human drivers that you won't even be allowed to take the wheel anymore, Tesla co-founder and CEO Elon Musk said on Tuesday.

"People may outlaw driving cars because it's too dangerous," Musk told NVidia CEO Jen-Hsun Huang at the company's GPU Technology Conference in San Jose, California, according to CNBC. "You can't have a person driving a two-ton death machine."

Musk later clarified on Twitter that he doesn't support outlawing human-driven cars -- only that he could envision it happening in the future. 

In any case, it would be a while before human drivers are completely replaced. Musk said there are 2 billion cars on the road, and automakers can make 100 million vehicles per year. That means it would take at least 20 years to replace every car with an autonomous one.

While Musk has in the past called artificial intelligence "our biggest existential threat," and compared it to "summoning a demon," he said on Tuesday that autonomous cars won't be that demon.

"That's sort of like a narrow form of AI," Musk said, according to The Verge. "It would be like an elevator. They used to have elevator operators, and then we developed some simple circuitry to have elevators just automatically come to the floor that you're at ... the car is going to be just like that."

Tuesday, March 17, 2015

SpaceX Boosting Output, On-Track for 13 Rocket Launches This Year

As reported by Reuters: Space Exploration Technologies, or SpaceX, is rapidly increasing production of the engines that power its Falcon 9 rocket and expects to meet its target of 13 launches and two test flights this year, President Gwynne Shotwell told Reuters.

SpaceX, the technology upstart founded by entrepreneur Elon Musk, is stepping up hiring of engineers and other workers to help boost production, including many from other sectors such as the automotive industry and the military, company officials said.

This year, the company expects to produce at least 180 engines, with that number set to increase to 240 next year, and 400 in 2017, Shotwell told Reuters in an interview late last week.

Shotwell said increasing production put the company on track to complete 13 launches this year. It fell short of its targets last year due to a number of factors.

"Certainly from a manufacturing perspective, we should be able to meet those targets," said Shotwell, who is due to testify before the House Armed Service Committee on Tuesday about a drive to end U.S. reliance on a Russian-built engine that powers one of two rockets used by SpaceX rival United Launch Alliance (ULA).

The Air Force expects to certify SpaceX by June to launch some military and intelligence satellites using its Falcon 9 rockets. Currently, those satellites can only be launched by ULA, a joint venture of Lockheed Martin Corp and Boeing Co, the two largest U.S. arms makers.

SpaceX has shaken up the satellite industry in recent years, winning a variety of launch contracts from commercial firms, as well as NASA, and putting pressure on ULA to lower its costs. But skeptics say the jury is still out on whether SpaceX can keep up with rising demand and growing backlog.

SpaceX has already launched three times this year and is gearing up for a fourth launch on March 21, followed by a cargo resupply mission for NASA in early April.

The company also has a prototype crew capsule at Cape Canaveral for a test flight to prove that a spaceship carrying astronauts could safely abort a mission if a rocket blew up on the launch pad, she said.

SpaceX plans a second test flight this year for NASA, aimed showing its ability safely land astronauts if a launch was aborted during flight.

Shotwell said the company was also making "great progress" on its 27-engine Falcon Heavy rocket, and planned to test it later this year at a refurbished space shuttle launch pad at Kennedy Space Center in Florida. 

NASA's Testing its 18-Engine Electric Plane Concept

As reported by Engadget: NASA's set to test a wing concept it says "may herald (the) future" of electric planes, but it almost looks like a joke -- it has one-third the wing area of a normal aircraft and 18 electric motors. However, the space agency is dead serious about the LEAPTech wing, a joint partnership with two private aerospace companies. It consists of a 31-foot, carbon composite span with tiny motors powered by lithium iron phosphate batteries. After successful testing at slower speeds, NASA will "fly" a wing section aboard a specially-equipped truck at speeds up to 70mph. Eventually, the wing will be mounted to a commercial Tecnam P2006T aircraft and flown by test pilots.

So, what's up with the crazy LEAPTech wing? According to inventor Joby Aviation, the thrust from all the motors and props increases the air velocity over the wing uniformly, drastically boosting lift. Each motor is independently controlled by a computer, allowing engineers to tailor speeds for optimal performance. All of that allows for a much smaller wing with reduced drag, which in turn delivers higher efficiency, faster speeds, a smoother ride and a lower noise signature. At the same time, a LEAPTech aircraft takes off and lands at the same speeds and distances as a normal plane.
The concept is part of NASA's plan to transition aircraft to electric propulsion within the next ten years. NASA said the technology "has the potential to achieve transformational capabilities in the near-term for (private) aircraft, as well as for transport aircraft in the longer-term." That said, electric planes suffer from the same range issues as electric cars, and NASA's wing doesn't look like it would fly at all without power. 

The space agency will no doubt have to thoroughly prove the LEAPTech wing concept before sending up test pilots.

Monday, March 16, 2015

An Autonomous Car Is Going Cross-Country for the First Time

As reported by WiredLots of people decide, at one point or another, to drive across the US. College kids. Beat poets. Truckers. In American folklore, it doesn’t get much more romantic than cruising down the highway, learning about life (or, you know, hauling shipping pallets). Now that trip is being taken on by a new kind of driver, one that won’t appreciate natural beauty or the (temporary) joy that comes from a gas station chili dog: a robot.

On March 22, an autonomous car will set out from the Golden Gate Bridge toward New York for a 3,500-mile drive that, if all goes according to plan, will push robo-cars much closer to reality. Audi’s taken its self-driving car from Silicon Valley to Las Vegas, Google’s racked up more than 700,000 autonomous miles, and Volvo’s preparing to put regular people in its robot-controlled vehicles. But this will be one of the most ambitious tests yet for a technology that promises to change just about everything, and it’s being done not by Google or Audi or Nissan, but by a company many people have never heard of: Delphi.

“It’s time to put our vehicle to the ultimate test by broadening the range of driving conditions,” says Delphi CTO Jeff Owens.

Delphi doesn’t build cars; it builds the stuff that goes into cars. It’s a key supplier to the auto industry, and has been for almost as long as there’s been an auto industry. It’s got a solid record of innovation, too. It built the first electric starter in 1911, the first in-dash car radio in 1936, and the first integrated radio-navi system in 1994.

Now it’s built a self-driving car, based on a 2014 Audi SQ5 (chosen simply because it’s cool. No, really.). The car looks like any other SQ5 (but for the stickers), but it’s packed with sensors and computers Delphi developed to replace humans: A camera in the windshield looks for lane lines, road signs, and traffic lights. Delphi installed a midrange radar, with a range of about 80 meters, on each corner. There’s another at the front and a sixth on the rear. That’s in addition to the long-range radars on the front and back, which look 180 meters ahead and behind.

This isn’t Delphi’s bid to start selling vehicles directly to consumers. It’s in the business of developing things automakers don’t want to (or can’t) develop themselves, and the rise of autonomous driving is a fertile field of opportunities. This market, including active safety features (which do things like keep you in your lane, adjust your speed on the highway, and brake before you hit that cyclist you didn’t see) is growing 35 percent every year. It made Delphi $1.4 billion in 2014, a number the company wants to grow by 50 percent year over year.

Building your own autonomous car is a good way to develop the hardware (radar and LIDaR) and software (the algorithms that make driving decisions) automakers will need. “What we expect to do is be able to create better sensors and more sensors, and then the software algorithms as well, which the [automakers] will need as they take more steps along that journey to automated driving,” says Owens.

So why the road trip? It’s about collecting data. Delphi says it’s covered hundreds of miles in the past year or so around Silicon Valley and Las Vegas, both on the highway and on city streets. Going from California to New York provides terabytes of information on how the sensor suite detects the world around it, and how the car drives. With that data, it can continue to improve its technology, tweaking software and hardware alike to make the car’s driving more reliable.

Delphi plans to make the trip in eight days, driving at most eight hours a day. The leisurely pace will keep everyone fresh, Owens says. Besides, the car will not be breaking the speed limit—just because Google does it doesn’t make it okay to speed—so some extra time is necessary. Sticking to a southern route and driving while the sun is up means better weather and conditions for the car’s sensors. When it’s not on the highway, one of the humans inside will take the wheel.

As far as skill goes, Owens says, “virtually anything you would do on the highway, the car will be capable of doing as well.” That means maintaining a steady speed and safe distance from other cars, and passing slower vehicles. If it gets cut off or a couch falls off a pickup truck right into its path, the car will do the smart thing: brake like hell, and move to the left or right if it’s safe.

If all goes well, the rolling catalog of automotive expertise will arrive in the Big Apple on the eve of the New York auto show, showing the public, and automakers, what the future holds.

Second Galileo FOC Satellite Reaches Corrected Orbit

As reported by Inside GNSS: The European Space Agency (ESA) announced March 13, 2015 that second Galileo full operational capability (FOC) satellite launched into the wrong orbit last August has now entered its corrected target orbit, which will allow detailed testing to assess the performance of its navigation payload.

Launched with another FOC spacecraft, its initial elongated orbit saw it travelling as high as 25,900 kilometers above Earth and down to a low point of 13,713 kilometers, confusing its onboard Earth sensor used to point satellite’s navigation antennas toward the ground.

A recovery plan was devised between ESA’s Galileo team, flight dynamics specialists at ESA’s ESOC operations center and France’s CNES space agency, as well as satellite operator SpaceOpal and satellite manufacturer OHB.

This involved gradually raising the lowest point of the satellites’ orbits more than 3,500 kilometer while also making them more circular.

The second FOC satellite — and fifth operational Galileo spacecraft, counting four in-orbit validation (IOV) — entered its corrected orbit at the end of November 2014. Both its navigation and search and rescue payloads were switched on the following month to begin testing.

Now the sixth satellite has reached the same orbit, too.

This latest salvage operation began in mid-January and concluded six weeks later, with some 14 separate maneuvers performed in total.

Its corrected position is effectively a mirror image of the fifth satellite’s, placing the pair on opposite sides of the planet. The exposure of the two to the harmful Van Allen Belt radiation has been greatly reduced, helping to ensure future reliability.


Significantly, the corrected orbit means they will overfly the same location on the ground every 20 days. This compares with a standard Galileo repeat pattern of every 10 days, helping to synchronize their ground tracks with the rest of the constellation.

The test results from Galileo 5 proved positive, with the same test campaign for the sixth satellite due to begin shortly, overseen by ESA’s Redu centre in Belgium. A 20 meter­­–diameter antenna will study the strength and shape of the navigation signals at high resolution.

“I am very proud of what our teams at ESA and industry have achieved,” says Marco Falcone, head of Galileo system office. “Our intention was to recover this mission from the very early days after the wrong orbit injection. This is what we are made for at ESA.”

The decision whether to use the two satellites for navigation and search-and-rescue purposes will be ultimately taken by the European Commission, as the system owner, based on the in-orbit test results and the system’s ability to provide navigation data from the improved orbits.

The next pair of satellites is due for launch on March 27.

Google/Titan Solar-Drone Internet Tests are About to Take Off

As reported by ITWorld: Google’s ambitious plans to provide Internet access to remote areas via solar-powered drones are getting ready to take off.

Titan Aerospace, the drone-maker acquired last year by Google to help realize the project, recently applied for and received two licenses from the U.S. Federal Communications Commission to run tests over the next six months.

The licenses, which are valid from March 8 until September 5, don’t give away much because Google has asked the FCC to keep many of the details confidential for commercial reasons, but they reveal the tests will take place inside a 1,345 square kilometer (520 square mile) area to the east of Albuquerque. The area includes the town of Moriarty, where Titan Aerospace is headquartered and conducts its research and development work.

The drone experiments are one of two projects at Google to deliver Internet from the skies.

The other, called Project Loon, involves the use of high-altitude balloons and is already well underway.

Speaking at the Mobile World Congress expo in Barcelona earlier this month, Google’s Sundar Pichai said Project Loon balloons were now successfully staying aloft for as long as six months. Google is working with Vodafone in New Zealand, Telstra in Australia and Telefonica in Latin America to deliver Internet over LTE networks to handsets on the ground.

The drone tests, called “Project Titan,” are envisaged to work alongside the balloons to deliver connectivity to areas that need additional capacity, such as those hit by a natural disaster.

In Barcelona, Pichai said the Titan aircraft would be taking to the skies in the next few months.
Google acquired Titan Aerospace in April 2014 for an undisclosed amount.

While much interest has been focused on its Internet experiments, its aircraft have other possible uses. In dealings with the FCC, Titan describes itself as specializing in “developing solar and electric unmanned aerial systems for a variety of uses (e.g., broadband access in remote areas, environmental monitoring).” In previous communications with the Federal Aviation Administration, prior to its acquisition by Google, it said its aircraft could, in addition to telecoms, provide “surveillance services to public, private and government organizations.”

Saturday, March 14, 2015

Mechanical Engineer 3D Prints a Working 5-Speed Transmission

transmission1As reported by 3DPrintWho says that you can’t make anything useful on a desktop 3D printer? Sure, there are plenty of designs that you can find on 3D printing repository websites which make you question the motive of the designers — but at the same time, there are engineers and designers creating things that make you just stop and say, “WOW!”

One of these latter instances comes in the form of a 3D printed 
5-speed transmission for a Toyota 22RE engine, created by a mechanical engineer named Eric Harrell of Santa Cruz, California. Not only does it look legitimate, but it also is completely functional.

You may recall a story that we did back in January about a 
3D printed Toyota Engine. It was also designed by Harrell, after he completely reverse engineered a real Toyota 22RE engine. It received such a great reception from both Thingiverse users and the national media, that Harrell decided to take his creation one step further, providing this latest 3D printed transmission to complement the engine.

The two actually can be combined to create the ultimate piece of 3D printed machinery.

“I made the transmission due to the the success of my first upload, the 4 cylinder Toyota engine,” Harrell tells 3DPrint.com.  “The overall number of people that were interested was overwhelming.  I never thought that many people would be interested in it, yet actually print and build it, due to the shear complexity and print time involved. So far 8 people have made the engine and many more are in the process.”
transmission1
In all, it will take about 48 hours of print time to print out all of the individual pieces needed to assemble the transmission. Once the pieces have all been printed, they will need to be assembled using the diagrams that Harrell provides. He admits that it’s not an easy task to put the transmission together once the parts have been printed, but welcomes questions from anyone who has difficulty doing so.
Transmission and engine mated together.
Transmission and engine mated together.
“If one was to build either my transmission or engine, they would have a pretty good idea of how to put an actual engine together since these are modeled after real parts,” Harrell tells us. “Which is great, because most people that are interested in 3D printing would never get the opportunity to actually rebuild an engine or transmission.”
transmission4
While the majority of the transmission is 3D printed, there are some smaller parts which can not be printed on a desktop 3D printer, such as the 3mm rod, (18) 623zz bearings, (20) 3mm washers, and a few other small odds and ends like screws and bolts. At the same time, Harrell doesn’t ensure that all the parts will be ready to go off of the printer. Depending on the 3D printer used, some of them may need to be scaled up or down in order to fit together properly. Rather than scaling the parts, he also suggests that you could simply file them down where needed.
“The transmission works exactly like most manual transmissions found in any car or truck,” explained Harrell.  “However, I can barely explain how it works. It’s fairly hard to grasp unless you assemble one or see an animation of one opened up.”
Regardless of the time required for printing and assembly, this has to be one of the most incredible designs that we have come across yet on Thingiverse.  Most incredibly, Harrell tells us that it could absolutely be used in a real vehicle, since it is a scaled down version of the real thing.
What do you think about this incredible 3D printed Toyota transmission? Have you, or will you be 3D printing your own? Discuss in the 3D Printed Toyota Transmission forum thread on 3DPB.com. Check out the video below of the 3D printed transmission in action.